

Lecture Notes in Computer Science 2107
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Frederic T. Chong Christoforos Kozyrakis
Mark Oskin (Eds.)

Intelligent
Memory Systems

Second International Workshop, IMS 2000
Cambridge, MA, USA, November 12, 2000
Revised Papers

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Frederic T. Chong
Mark Oskin
University of California
Dept. of Computer Science
Davis, 95616 CA, USA
E-mail:{chong,mhoskin}@cs.ucdavis.edu

Christoforos Kozyrakis
University of California
EECS Computer Science Division
415 Soda Hall 1776
Berkeley, 94720-1776 CA, USA
E-mail:kozyraki@cs.berkeley.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Cognitive technology: instruments of mind : 4th international conference ;proceed-
ings / CT 2001, Warwick, UK, August 6 - 9, 2001. Meurig Beynon ...
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2117 : Lecture notes in
artificial intelligence)
ISBN 3-540-42406-7

CR Subject Classification (1998): B.3, B, C, D.4, F.3

ISSN 0302-9743
ISBN 3-540-42328-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingräber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN 10839540 06/3142 5 4 3 2 1 0

Preface

We are pleased to present this collection of papers from the Second Workshop on
Intelligent Memory Systems.

Increasing die densities and inter-chip communication costs continue to fuel

interest in intelligent memory systems. Since the First Workshop on Mixing Logic
and DRAM in 1997, technologies and systems for computation in memory have
developed quickly. The focus of this workshop was to bring together researchers from
academia and industry to discuss recent progress and future goals.

The program committee selected 8 papers and 6 poster session abstracts from 29

submissions for inclusion in the workshop. Four to five members of the program
committee reviewed each submission and their reviews were used to numerically rank
them and guide the selection process. We believe that the resulting program is of the
highest quality and interest possible. The selected papers cover a wide range of
research topics such as circuit technology, processor and memory system architecture,
compilers, operating systems, and applications. They also present a mix of mature
projects, work in progress, and new research ideas.

The workshop also included two invited talks. Dr. Subramanian Iyer (IBM

Microelectronics) provided an overview of embedded memory technology and its
potential. Dr. Mark Snir (IBM Research) presented the Blue Gene, an aggressive
supercomputer system based on intelligent memory technology.

Several people contributed to making this workshop happen. We would like to

thank the members of the program committee for the considerable time they spent
during the review and selection process. David Patterson (UC Berkeley) and Mark
Horowitz (Stanford), the steering committee members, provided valuable advice on
the scope and the organization of the workshop. We would also like to thank Larry
Rudolph (MIT), James Hoe (CMU), and the rest of the ASPLOS-IX organizing
committee for their help with local arrangements, registration, financing, and the
proceedings. Finally, we would like to thank all the authors that submitted their
papers to this workshop.

May 2001 Fred Chong, Christoforos Kozyrakis, and Mark Oskin

VI Organization

Workshop Committee

Co-chairs
Frederic Chong (University of California at Davis)
Christoforos Kozyrakis (University of California at Berkeley)

Steering Committee
David Patterson (University of California at Berkeley)
Mark Horowitz (Stanford University)

Publicity and Publications
 Mark Oskin (University of California at Davis)

Program Committee

Krste Asanovic (Massachusetts Institute of Technology)
John Carter (University of Utah)
Frederic Chong (University of California at Davis)
Nikil Dutt (University of California at Irvine)
Jose Fortes (Purdue University)
John Granacki (USC Information Sciences Institute)
Patrick Hanrahan (Stanford University)
Peter Kogge (Notre Dame University)
Christoforos Kozyrakis (University of California at Berkeley)
Konrad Lai (Intel)
Kazuaki Murakami (Kyushu University)
Josep Torrellas (University of Illinois at Urbana-Champaign)
Woodward Yang (Harvard University)

Table of Contents

Memory Technology

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro1
Junji Ogawa (Fujitsu Laboratories of America) and Mark Horowitz (Stanford
University)

Software Controlled Reconfigurable On-Chip Memory
for High Performance Computing ...15
Hiroshi Nakamura, Masaaki Kondo (University of Tokyo), and Taisuke Boku
(University of Tsukuba)

Processor and Memory Architecture

Content-Based Prefetching: Initial Results ..33
Robert Cooksey, Dennis Colarelli, and Dirk Grunwald (University of Colorado)

Memory System Support for Dynamic Cache Line Assembly56
Lixin Zhang, Venkata K. Pingali, Bharat Chandramouli, and John B. Carter
(Unversity of Utah)

Adaptively Mapping Code in an Intelligent Memory Architecture71
Yan Solihin (University of Illinois at Urbana-Champaign), Jaejin Lee (Michigan
State University), and Josep Torrellas (Univeristy of Illinois at Urbana-Champaign)

Applications and Operating Systems

The Characterization of Date Intensive Memory Workloads
on Distributed PIM Systems ..85
Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues (University of Notre Dame)

Memory Management in a PIM-Based Architecture ...104
Mary Hall and Craig Steele (USC Information Sciences Institute)

Compiler Technology

Exploiting On-Chip Memory Bandwidth in the VIRAM Compiler122
David Judd, Katherine Yelick, Christoforos Kozyrakis, David Martin,
and David Patterson (University of California at Berkeley)

VIII Table of Contents

FlexCache: A Framework for Flexible Compiler Generated Data Caching135
Csaba Andras Moritz (University of Massachusetts), Matthew Frank,
and Saman Amarasinghe (Massachusetts Institute of Technology)

Poster Session

Aggressive Memory-Aware Compilation..147
Peter Grun, Nikil Dutt, and Alex Nicolau (University of California at Irvine)

Energy/Performance Design of Memory Hierarchies
for Processor-in-Memory Chips ..152
Michael Huang, Jose Renau, Seung-Moon Yoo, and Josep Torrellas (University
of Illinois at Urbana-Champaign)

SAGE: A New Analysis and Optimization System for FlexRAM Architecture160
Tsung-Chuan Huang and Slo-Li Chu (National Sun Yat-sen University)

Performance/Energy Efficiency of Variable Line-Size Caches
for Intelligent Memory Systems ..169
Koji Inoue, Koji Kai, and Kazuaki Murakami (Kyushu University)

The DIVA Emulator: Accelerating Architecture Studies for PIM-Based Systems ...179
Jeff LaCoss (USC Information Sciences Institute)

Compiler-Directed Cache Line Size Adaptivity ..183
Dan Nicolaescu, Xiaomei Ji, Alexander Veidenbaum, Alexandru Nicolau,
and Rajesh Gupta (University of California at Irvine)

Workshop Notes ..188

Author Index..193

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp 1–14, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank
DRAM Macro

Junji Ogawa1 and Mark Horowitz2

1 Fujitsu Laboratories of America
jogawa@fla.fujitsu.com

2 Computer Systems Laboratory, Stanford University

Abstract. This paper describes a high bandwidth and low latency hybrid wave-
pipelined data bus scheme for multi-bank DRAM macros on single chip
multiprocessors. Long data bus lines inserted with multiple wave-pipelined stages at
each bank input/output are further divided by periodically inserted synchronizing
registers to overcome cycle time degradations due to skew and jitter effects in the
wave-pipe. Each memory macro controller controls the access sequence not only to
avoid internal bank access conflicts, but also to communicate with the other
controllers through the hybrid bus. A SPICE simulation result is shown assuming
for a 64Mbit macro comparing four 128bit wide data bus schemes. The hybrid
scheme can realize over 1GHz on-die data bus for multi-bank DRAM.

1. Introduction

Designers have long known that the growing gap between DRAM performance and
processor performance would limit system performance. With the continued scaling of
process technologies, the large available silicon die area allows for the integration of
DRAM and logic onto a single die. This increases the DRAM bandwidth and decreases
the latency [2][3]. But with the possibility of putting multiple processors on a single die,
the pressure on the DRAM bandwidth further increases [1][9][10].

Multi-banking the DRAM [14] can help ease this pressure by allowing multiple non-
conflicting requests to access the DRAM concurrently [5][6]. However, even with multi-
banked embedded DRAM, the connection between the processing elements and DRAM
macros can still be a bottleneck. This paper proposes a repeated, wave-pipelined data bus
[7][8] for multi-banked DRAM macros. The proposed data bus scheme breaks the long
bus lines into multiple repeated stages with a synchronizer in the middle, thus making the
bus delay linear with length. We can have multiple requests or replies in flight on the line
at the same time by wave-pipelining the bus. Using wave pipelining we avoid the
additional delay from synchronizing register elements [4]. Jitter on the clocking line and
process variation ultimately limits the length of the bus, but inserting a synchronizer in
the middle alleviates this problem at the cost of some additional delay. The periodic
insertion of registers represents a hybrid between a fully synchronous bus and a fully
wave-pipelined bus. The proposed hybrid wave pipeline method using multiple banks can
meet the high bandwidth requirement in future SOCs and multiprocessors.

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 2

2. Concept of the Hybrid Wave Pipeline

Figure 1 shows the concept of the DRAM data path hybrid pipeline scheme. Two macros
are shown in figure 1, and each macro is composed of a memory controller (MC) and a
DRAM macro, which consists of k independent banks, each with m-bit wide data
input/output ports. Figure 1 shows how multiple DRAM macros can be shared between
different processors or memories. Two multi-bank DRAMs are connected together using
their backside ports. Each macro has two dedicated clock wave pipeline data paths inside,
and pipe expansion is enabled through the backside connection using synchronizers to
share the macros between different requestors such as a CPU or other IP macro. A system
clock needs to be provided only into each memory controller and into the mesochronous
synchronizers. Each of the two requestors can access all banks up to the addressable bank
boundary. The addressable bank boundary is set up statically before memory access
operations begin. One of the two requestors can access memory banks beyond the
physical boundary between macros through the synchronizer.

The purpose of hybrid wave pipelining is to balance high bandwidth and low latency
cost-efficiently on the data path between the memory controller and memory banks. For
future multiprocessor systems having multiple access requestors to a memory macro, the
wide I/O port giving high bandwidth without loss of latency is a desirable feature of the
on-die macro.

Assuming multi-banking is implemented, there are many ways to achieve a high
bandwidth. For example, an easy way is simply to give a wide port to each bank and
making the whole memory macro I/O wider. However, getting higher bandwidth in this
manner is costly in terms of the physical wiring area. Moreover, the bandwidth is
available only to CPUs and IP macros designed to handle it, for example, a special

m m m m

m
m

B
an

k_
10

Wave Pipelined Bus

MC1

Back Side Ports
Memory
Controller

DRAM Maco M1

B
an

k_
11

B
an

k_
12

B
an

k_
1k

m m m m

m
m

Wave Pipelined Bus

MC2

Back Side Ports
Memory
Controller

DRAM Maco M2

B
an

k_
21

B
an

k_
22

B
an

k_
2k

B
an

k_
20

SY

Synchronizer

System Clock

C
PU

1

C
PU

2
Addressable bank boundary

Fig. 1. Concept of Hybrid Pipeline Scheme; Each of two DRAM macros, M1 or M2, has
k banks and a memory controller (MC). Outgoing and incoming data between MC and
banks travel on the wave-pipelined bus. The opposite end of the wave-pipelined bus
connects to a synchronizing register clocked by a system clock.

3 Junji Ogawa and Mark Horowitz

purpose streaming-data machine [1][9][12][18]. Another way to achieve high bandwidth
is to use a mainstream high-speed I/O technique in the standard DRAM such as
RAMBUS [3][13][16], DDR or SLDRAM [17], and for the embedded macro data paths
as well. However, these techniques are optimized for board-level data buses where wiring
is extremely tight, and moreover, they would require an expensive PLL in each RAM
bank if they were implemented on-chip.

It is easier to increase wires and banks on-chip than on a PC board, but there are still
trade-offs required to harmonize latency and bandwidth, while recognizing that wires are
not free [13]. The proposed hybrid wave pipeline scheme is a candidate solution that
maximizes the bandwidth per wire while maintaining short latency and reducing the cost
of communication paths between different access requestors in future large VLSI chips.

Before describing the hybrid wave pipeline scheme in detail, in the next section we
analyze the latency and area trade-offs for different bank sizes and IO widths.

3. Analysis of Latency and Cost of Multi-banked DRAM

One of the crucial parameters in designing multi-banked DRAM macros is the bank size.
While using smaller banks to get high bandwidth decreases the bank access time and
usually the macro access time, the area overhead increases. Assuming layout using a
0.18um embedded DRAM cell technology and 256Mbit total on die memory, Figures 2
and 3 show estimated area and latency versus bank granularity. The base design is for a
macro composed of 8 x 32Mbit banks using a 16bit port. Figure 2 shows the normalized
area of a 256Mbit DRAM macro for a variety of bank sizes using 16bit, 128bit or 256bit
access port each. The figure shows that the area increases sharply as the bank granularity
is decreased to get high bandwidth, especially for the wide I/O banks.

Figure 3 plots the bank and macro access time tRAC against the bank size. For the
bank sizes shown, both the bank and macro access times improve with decreasing bank
size mainly due to shorter word and/or bit lines. A smaller bank granularity and a wider
bus achieve higher bandwidth, and one can also reduce the random access latency, tRAC,
by 20% compared to the base design by tripling the macro size with 128 or more I/O
ports. However, from the cost-performance point of view, 1Mbit or 2Mbit bank size with
128-bit or 256-bit in a 0.18um cell technology are good alternatives, balancing the
bandwidth and latency while paying a much lower (~1.5X) area penalty.

Using at 0.18um DRAM cell technology, approximately 256Mbit of DRAM can be
implemented on a single die. Based on the above estimation, it is a good choice to divide
the memory on die into 128 x 2Mbit banks with a 128-bit width. There’s still flexibility in
selecting the number of macros to divide the 256Mbit memory into, corresponding to the
number of access requestors on die, each of which needs an independent controller.

4. Data Bus Design Options

4-1. Fully Synchronous and Asynchronous Bus

Figure 4(a) shows a conventional data bus (CBUS) connecting all of the banks using
dedicated read and write buses. This method has been widely used for a long time in
actual standard DRAM designs due to the area savings by sharing wires physically for the
bus line with all of the banks. As technology scales, sharing the bus wires with banks in a

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 4

large part of the chip makes it difficult to keep up with high data rate required from
DRAM. This scheme needs thicker upper layer metal wires for the bus to reduce
resistance, and also spacing between bus wires must be relaxed to reduce capacitance and
crosstalk noise. The end result is serious area cost and performance degradation for future
large chips.

Figure 4(b) shows a fully synchronous pipeline scheme (FSP) [4], also using dedicated
read and write buses. In this scheme, both buses are pipelined using registers at each bank
I/O. The FSP scheme has the advantage of higher bandwidth than the conventional
scheme, however the latency of the FSP bus is larger and increases with pipe depth, since
each data token is advanced only one segment per clock cycle. Another advantage of FSP
is the ease of increasing its maximum frequency as long as the system clock is distributed
with small skew. Finally, the FSP scheme can use finer metal pitch (lower layer metals)
than the conventional bus scheme because the paths between registers, corresponding to
the pipe stages, are smaller.

16 I/O

50

100

150

200

250

N
or

m
ar

iz
ed

 A
re

a
(%

)

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����

300

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

128 I/O

256 I/O

0

Bank Granularity

32M
16M

8M
4M

2M
1M

512K
256K

128K
64K

32K

Fig. 2. Bank Granularity vs. Estimated Macro Area (normalized.) The base design is a
256 Mbit DRAM divided into 8 banks with a 16-bit wide ports. The three kinds of bars
indicate 16-bit wide, 128-bit wide and 256-bit wide port macro respectively.

5 Junji Ogawa and Mark Horowitz

Fig. 3. Bank Granularity vs. Normalized Access Time (tRAC)

Another choice is a fully asynchronous bus. In general, a fully asynchronous bus can’t

achieve higher bandwidth nor can it achieve lower latency in real designs due to the time
overhead for the inevitable handshaking between stages. On the other hand, a wave-
pipeline method with mesochronous synchronization has been proposed as a possible
solution to achieve bandwidth close to the fully synchronous scheme and latency close to
the conventional scheme [7][8]. However, wave-pipelining design is difficult due to the
critical skew and jitter control problem, and the difficulty increases as the design scales
up. A longer depth wave-pipeline increases skew due to dynamic voltage and temperature
variation and on-chip process variation.

4-2. Hybrid Scheme Based on Dedicated Clock Wave-Pipeline

To overcome the problems discussed in the previous section, we propose a hybrid
pipeline scheme (HBP) based on a dedicated clock wave-pipelined bus (CWP), in which
wave-pipeline segments are connected together periodically with synchronizers.

Figure 5(a) shows the concept of the CWP scheme. Each bus is divided into multiple
segments, each of which corresponds to one bank I/O. Instead of using registers in every
stage as in the FSP scheme, we wave-pipeline the bus using combinational logic blocks at
each bank to buffer the data. Tx and Rx denote clocking signals. Tx is a dedicated clock
used for the write bus, and Rx is a dedicated clock for the read bus. Rx and Tx can be
generated independently, as long as they have the same frequency. As seen in figure 5(a),

Macro Access

One Bank Access

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

20

40

60

80

100

0

Bank Granularity

32M
16M

8M
4M

2M
1M

512K
256K

128K
64K

32K

A
cc

es
s

T
im

e
(%

)

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 6

if the macro is not connected to another macro through a synchronizer, it is possible for
the Rx signal to be generated by the return path of the Tx signal at the end of the wave
pipe opposite the memory controller.

Both clocking signals propagate along replica delay lines, which match the delay of
the data lines. The memory controller includes a mesochronous synchronizer to receive
read data associated with Rx and then synchronize the data to the system clock domain.
The clocking signals Tx and Rx facilitate proper latch timing at the inputs and outputs of
the DRAM banks. The mismatch between Tx and Rx at any memory bank doesn’t cause
a problem provided the memory controller is programmed to insert appropriate null data
cycles when sending read/write requests so that the actual write and read latch timings at
the bank I/O are spaced by greater than the minimum bank cycle time. In a given cycle,
only the timing relationship between Tx and write data or between Rx and read data
needs to be controlled.

Figure 5(b) shows the hybrid pipeline scheme, HBP. In the HBP scheme, a set of
synchronizers and registers are inserted between two buses, each of which has multiple
wave-pipeline stages. Synchronization adds at most one additional system clock cycle to
the data between wave-pipeline stages. In the HBP scheme, the load of the system clock
can be greatly reduced compared to the FSP scheme. The maximum numbers of wave-
pipe stages is determined roughly by limiting the maximum skew generated in the
pipeline to less than ½ of the clock period.

(a)

128

m1

DRAM
Bank n-1

AregWregRreg

128

DRAM
Bank n

MC

Add & Cntl

Data Read
Data Write

Clock
Divider

(b)

128

m2

128

System
Clock

Data Read
Data Write

Add & Cntl
MC

Pipe RegisterPipe Register

System
Clock

AregWregRreg

DRAM
Bank n-1

AregWregRreg

DRAM
Bank n

AregWregRreg

Fig. 4. (a) Conventional Bus (CBUS), (b) Fully Synchronous Pipeline Bus (FSP)

7 Junji Ogawa and Mark Horowitz

Fig. 5. (a) Dedicated Clock Wave Pipeline Bus, (b) Hybrid Scheme

4-3. Hybrid Circuit and Stage Operation

Figure 6(a) shows the unit circuit of the wave-pipeline. An or-and (OA) gate receives
both traveling data from the previous neighbor stage, PathIn, and outgoing data from the
bank, Rdout, and generates the next stage in the wave-pipeline, PathOut. The write input
of the bank, Wdin, is buffered from PathIn. The static signal Boundary_signal is used to
shut off the pipeline at an addressable memory boundary. The wave-pipeline stage has
negligible area penalty compared to a CBUS, due to its use of the simple OA repeater
component. Assuming the same wire pitch used for the bus line, the area penalty of the
CWP bus compared to the CBUS is less than 10%. The total macro area penalty is less
than 0.6%, assuming the bus occupies 6% of the memory macro. Usually, a CBUS wire is
wider than a CWP bus wire, so the area penalty will be reduced in an actual design.

To latch write-in data and addresses correctly into a RAM bank, each uses its local Tx
clock, which can also be used to activate the bank. On the other hand, the MC needs a
mesochronous controller to receive its 128-bit data correctly. The internal MC
synchronizer needs an initializing operation to learn the pipe delay characteristics.
Individual banks don’t need synchronizers, even while sending read-out data after bank
activations triggered by Tx, because the MC knows when the write or read enable signal
should be sent, and how many null data cycle should be inserted to skip a cycle.

128

m3

128

MC

Add &Cntl

Dread

Dwrite

System
Clock

Synchronizer

�������
�������
�������
�������
�������

Wave Pipe Bank Buffers

(a)

k3

Tx

Rx

128

m4
128

MC

Add & Cntl

Synchronizer

Tx

��������
��������
��������
��������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������
��������
��������
��������
��������
��������

R
eg

is
te

r

Sy
nc

hr
on

iz
er

W
av

e
Pi

pe
 B

uf
fe

rs

Bank n-1 Bank nBank 0 Bank 1
(b)

Tx

Inserted Synchronized Stage

Rx

W
av

e
Pi

pe
 B

uf
fe

rs

W
av

e
Pi

pe
 B

uf
fe

rs

W
av

e
Pi

pe
 B

uf
fe

rsRx

Dread

Dwrite

System
Clock

DRAM
Bank n-1

AregWregRreg

DRAM
Bank n

AregWregRreg

Rx

Tx

k4

k3

k4

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 8

Fig. 6. Hybrid scheme Unit Circuit: (a) CWP bank write data-in buffer and OA, (b) Synchronizer

Figure 6(b) shows a simple embodiment of a mesochronous synchronizer, which has 2
flip-flops for 2-way interleaving and a multiplexor or 2x2 switch for every data line, and
one shared phase comparator and adjustable delay element. If the frequency is high, more
interleaving flip-flops are needed with finer gradations of clock phase. Dynamic phase
adjustment and an accurate phase-interpolator should be provided in the synchronizer for
fine-tuning. Although synchronizers both in the MC and in the middle of the wave-pipe
cost additional layout area, the penalty is less than 1% of the macro area due to the
relatively small number needed in the HBP scheme.

Figure 7 shows the CWP read path circuit and the bank read data registers in detail. A
timing diagram of read operation in Figure 7 is shown in Figure 8. Before starting the
operation, all lines are pre-charged to “1” and transition only when sending a “0”. The
dedicated reference clock, Rx, always travels on the replica wires in the same direction as
outgoing data at the same time, as shown in the figure, so that data and clock (Rx)
propagation delay between Pathin (N04)-N06-N14 and RxIn (N00)-N01-N10 are
matched to minimize skew.

R0d, R1d and R2d denote 128-bit wide read data registers in three banks 0, 1, and 2,
respectively. The registers are clocked by their local Rx signals (N02, N12 and N22).
Outputs data N03 from R0d goes to N05, which is one of two inputs of the wave-pipe OA
gate (the OR gate for the Boundary-signal is not shown in the figure for simplicity).
Clock in to data out delay between RxIn (N00)-N02-N03-N05-N06 and N01-N10-N12-
N13-N15-N16 should be matched as well. In this way, the maximum frequency of the
read operation is limited mainly by the sum of flip-flop delay (Tsetup + Tck-q) plus data
and clock skew, as long as the inserted synchronizer can follow the frequency.

Since high bandwidth requires a large number of wires in the wave pipeline, reducing
the area of the bus is an important issue in an actual design. We can wire the bus using
the intermediate metal layers for data lines, which typically have twice the resistance of
the top metal layers. Since over half of the delay is contributed by skew and flip-flop
related timing such as clock to Q delay at maximum bandwidth, the delay contributed by
wires is not dominant in the hybrid scheme. Therefore, it is possible to reduce the area
penalty of the bus by using the intermediate metal layers without significantly increasing
latency. The resultant macro overhead of this HBP scheme is estimated to be around 2%.

PathIn PathOut

Boundary_signal

WDin RDout
(a)

D Q

D Q

M
U

XPathIn
PathOut

Rx Phase
Comparator

System
Clock

(b)

������
������

�������
�������

delay

m

m

mm

9 Junji Ogawa and Mark Horowitz

Fig. 7. Wave Pipeline Circuit for Data Read in HBP and CWP

Fig. 8. Timing Diagram of the Wave Pipeline Circuit (see. Figure 7)

Stage 1 Stage 2

RxOut

PathOut
PathIn

128

128128

RxIn

EnaIn
EnaOut

Inner
Bank

Stage 0

N04

N06

N01

N05
OA0

E
Q

DQ

D

128

128

Bank0 D_read

N00

R0d

N02

Dec
R0e

FSM

N14

N16

N11

N15
OA1

E
Q

DQ

D

128

128

N10

R1d

N12

Dec
R1e

N24

N26

N21

N25
OA2

E
Q

DQ

D

128

128

N20

R2d

N22

Dec
R2e

N03 N13 N23
128 128

k

128

N09 N19 N29

128

FSM FSM

Bank1 D_read Bank2 D_read

kkk

kkk

��
��

������������������������
������������������������

��
��

������������������������

������������������������
������������������������

0 1 2
N00(Rx_0)

N02(Rclk_0)
N05(OAin_0)

N04(PathIn_0)

N06(PathOut_0)
N09(R0d_enable) valid (0)

valid (0)

valid (0)

valid (1)

valid (1)
valid (2)

N10(Rx_1)

N12(Rclk_1)
N15(OAin_1)

N14(PathIn_1)

N16(PathOut_1)
N19(R1d_enable)

N20(Rx_2)

N22(Rclk_2)
N25(OAin_2)

N24(PathIn_2)

N26(PathOut_2)
N29(R2d_enable)

0 1 2

0 1 2

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 10

4-4. Comparison of Bandwidth and Latency

Figure 9 shows bandwidth and latency comparisons for the four bus schemes, CBUS,
FSP, CWP and HBP, each with 128-bit input/output and 2Mbit banks. For the
simulations, we used a 0.18um CMOS logic circuit technology with 0.18um DRAM cell
technology. (We expect future processes aimed at SOC will combine high-density
DRAM cells with high-speed CMOS transistors for logic.)

Figure 9(a) and 9(b) results were obtained using SPICE simulation. In our SPICE
simulations, we modeled the power supply distribution using an RC mesh, and forced a
dynamic voltage variation by attaching piece-wise linear noise current sources at each
bank representing the bank transient current. The noise is initially adjusted to cause a 5%
p-p jitter on the path in each 3-sigma worst-case process corner in order to quantify skew
and performance degradation. The system clock was assumed relatively clean with only a
fixed estimated skew of 120psec.

Assuming use of intermediate metal layers for the bus lines and 2Mbit bank size, the
fully synchronous bus, FSP, has four times higher bandwidth than that of the CBUS when
the pipeline depth is over eight, as shown in Figure 9(a). However, under the same
conditions, the FSP has at least 30% higher latency than the conventional scheme, as
shown in Figure 9(b). Wave pipelining in CWP can achieve both high bandwidth and low
latency so that the hybrid scheme, HBP, can realize bandwidth close to FSP and latency
close to CWP even with the longer length bus, as long as synchronizers are inserted
periodically.

The HBP advantage will increase depending on the bus length and the degree to which
future wire technologies can scale RC characteristics. In fact, the wave pipeline itself has
a length limit depending on the process variation and jitter within each pipe region for a
given clock frequency. This limit can be reduced by: 1) using simple OA-buffers in
replicated layout for both data and dedicated clock lines as explained above, and 2)
inserting a synchronizer in the middle of the path.

Fig. 9. (a) Bandwidth vs. Pipe Depth, (b) Latency vs. Pipe Depth

1

FSP~2.5Gbps

HBP

CBUS

CWP

2.5

1.5

0.5

1.0

2.0

2 4 6 8 10
0

Pipe Depth (bus length)

B
an

dw
id

th
 (

G
bp

s/
lin

e)

1

FSP

HBP

 25

 15

 5

 10

 20

2 4 6 8 10
0

L
at

en
cy

 (
ns

)

CBUS

Bank tRAC

CWP

(a) (b)

Pipe Depth (bus length)

11 Junji Ogawa and Mark Horowitz

4-5. Taking Advantage of the Latency Difference between Banks

The MC controls access sequences [5][10][11] when conflicting bank addresses arrive.
The MC design could be enhanced to manage the latency difference of each bank and
pass the data to the requester when it is ready. However, to take advantage of the lower
latency to nearby banks, a handshake is required between the access requestor and the
memory macro to know when the response from the memory returns. Advanced
multiprocessors, including stream specific machines, generally use deep-pipe processing,
and it seems to be rather difficult to take advantage of these kinds of address dependent
latency differences without stalling their pipelines frequently, especially when the
difference in total latency from different banks is small. In future large chips, if the area
ratio between the processing units and the DRAM becomes smaller and the ratio
∆tRAC/tRAC becomes larger, it will become more desirable to take advantage of the
latency difference.

5. Embedded Macro Architecture

5-1. 64Mbit Macro Architecture

Figure 10(a) shows the block diagram of a 64Mbit macro; four 64Mbit macros are on a
die. This 64Mbit macro has 32 x 2Mbit banks and two streams of wave pipe paths. Figure
10(b) shows the 2Mbit bank in detail, which is divided into 8 blocks having 1K sense-
amplifier, 256 word lines, 128-bit read and write data buffers, address registers, and
control register and logic.

In Figure 10(a), two streams of wave pipeline path, p00 to p07 and p10 to p17, are
shown. Each pij denotes one pipe stage data path circuit block shared between two banks.
For example, the stage p00 is used for both bank #00 and bank #08. An internal memory
controller manages access sequence control not only to arbitrate access requests from
different source [5], but also to manage the wave pipelining to prevent bank-to-bank
access conflicts. The macro can have two ports, a main port on the front side near the
MC, and a sub-port on the backside at the far end of the wave pipeline. In the HBP
scheme, the backside port connects to the synchronizer (not shown in Figure 10.)
In terms of the simultaneous access to one macro from multiple requestors, the number of
accessible ports is equal to the number of wave-pipeline streams designed into the macro.

5-2. Four-Tile Configuration on a Single Chip

Figure 11 shows a configuration example of four 64Mbit macros, M1-M4, using a hybrid
pipeline with synchronizers connecting M1 to M2 and M3 to M4. If each memory
controller has additional logic, M1 can connect to M3, and M2 can connect to M4
vertically on the left and right sides in this figure.

By connecting two banks at their backsides as shown in Figure 1 and 11, and inserting
the synchronizer, the wave pipeline becomes expandable. As the path length increases,
which means a deep pipe, this hybrid scheme gains an advantage compared to both FSP
and CWP. The wave pipeline itself has a length limit depending on the process variation
and jitter within each pipe region, but inserting a synchronizer reduces this limit.

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 12

Fig. 10. Block Diagram of a 64Mbit DRAM Macro. (a) 64Mbit Macro, (b) 2Mbit Bank

Fig. 11. Example Block Diagram of Four-Tile Configuration

B
an

k
#0

0

B
an

k
#0

1

B
an

k
#0

2

B
an

k
#0

3

B
an

k
#0

4

B
an

k
#0

5

B
an

k
#0

6

B
an

k
#0

7

B
an

k
#0

8

B
an

k
#0

9

B
an

k
#0

A

B
an

k
#0

B

B
an

k
#0

C

B
an

k
#0

D

B
an

k
#0

E

B
an

k
#0

F

B
an

k
#1

0

B
an

k
#1

1

B
an

k
#1

2

B
an

k
#1

3

B
an

k
#1

4

B
an

k
#1

5

B
an

k
#1

6

B
an

k
#1

7

B
an

k
#1

8

B
an

k
#1

9

B
an

k
#1

A

B
an

k
#1

B

B
an

k
#1

C

B
an

k
#1

D

B
an

k
#1

E

B
an

k
#1

F

P00 P01 P02 P03 P04 P05 P06 P07

P10 P11 P12 P13 P14 P15 P16 P17

64
b~

25
6b

Memory
Controller
(MC)

Add
Cntl

R
eg

is
te

r

Access
Sequence
Generator

256

160

160

160

160

B
ac

k
S

id
e

P
or

t

(a)

Wave Pipe Stage
#00

256

Synchronizer

(b)

 Row Col Dec & Driver

1K
 S

en
se

 A
m

p

2M bit Bank:
8 x 256K Subbank

Subbank:
1K SA
256WL

8CL

25
6

W
L

W
L

L
D

B

12
8

L
D

B
 A

m
p

12
8b

 R
re

g

12
8b

 W
re

g128

128

14

12

WDin

RDout

Add

Cntl
Areg
Creg

I/
O

 R
eg

Synchronizer

M1 M2

M3 M4

CPU1
or IP1

64Mb

64Mb

64Mb

64Mb

Addressing Boundary Example

CPU3
or IP3

CPU2
or IP2

CPU4
or IP4

MC2

MC4

MC1

MC3

CWP

13 Junji Ogawa and Mark Horowitz

6. Conclusion

Future systems will demand higher bandwidth and lower latency from DRAM. Moving to
embedded DRAM improves both of these metrics, but the on-chip bus to the DRAM can
still be a bottleneck. We have proposed a hybrid bus scheme employing wave-pipelining
and periodic synchronization to achieve a bandwidth near that of a fully synchronous bus
and latency near that of a conventional bus.

7. Acknowledgements

The author thanks Dr. Ken Mai and Dr. Ron Ho of Stanford Computer Systems
Laboratory, Dr. Yasuo Hidaka of HAL Computer Systems Inc., and Mr. William Walker
of Fujitsu Laboratories of America for useful discussions, comments and encouragement.

References

[1] [MaiISCA’00] Ken Mai, et al., “Smart Memories: A Modular Re-configurable Architecture,”
In proceedings of the 7th Annual International Symposium on Computer Architecture, pages
161-171, June 2000.

[2] [PattersonMicro’97] David Patterson, et al., “A Case for Intelligent RAM,” IEEE Micro, pages
34-44, Mar./Apr. 1997.

[3] [CrispMicro’97] Richard Crisp, “Direct RAMBUS Technology,” IEEE Micro, pages 18-28,
Nov./Dec 1997.

[4] [TakahashiISSCC’00] O. Takahashi, et al., “1GHz Fully-Pipelined 3.7ns Address Access
Time 8kx1024 Embedded DRAM Macro,” In Digest of Technical Papers ISSCC 2000, Pages
396-397, Feb. 2000.

[5] [WatanabeISSCC’99] T. Watanabe, et al., “Access Optimizer to overcome the ‘Future Walls
of Embedded DRAMs’ in the Era of Systems on Silicon,” In Digest of Technical Papers
ISSCC 1999, Pages 370-371, Feb. 1999.

[6] [KimuraISSCC’99] T. Kimura, et al., “64Mbit 6.8ns Random Row Access DRAM Macro for
ASICs,” In Digest of Technical Papers ISSCC 1999, pages 416-417, Feb. 1999.

[7] [YoonJSSC’99] Hongil Yoon, et al., “A 2.5-V, 333-Mb/s/pin, 1Gbit, Double-Data-Rate
Synchronous DRAM,” IEEE Journal of Solid-State Circuits, Vol.34 No11, pages 1589-1597,
Nov. 1999.

[8] [ManVLSI’96] Jin-Man Han, et al., “Skew Minimization Techniques for 256-Mbit
Synchronous DRAM and Beyond,” 1996 Symposium on VLSI Circuits Digest of Technical
Papers, pages 192-193, June 1996.

[9] [OluktonISCA’99] K. Olukton, et al., “Improving the performance of speculative Parallel
Applications on the Hydra CMP,” In proceedings of the 1999 ACM International Conference
on Supercomputing, June 1999.

[10] [RixnerISCA’00] Scott Rixner, et al., “Memory Access Scheduling,” In proceeding of the 7th
Annual International Symposium on Computer Architecture, pages 128-138, June 2000.

[11] [Panda’99] Preeti R. Panda, N. D. Dutt, A. Nicolau, “Memory Issues in Embedded System-
On-Chip –Optimization and Exploration-,” Kluwer Academic Publishers, ISBN 0-7893-8362-
1, 1999.

[12] [RixnerISM’98] Scott Rixner, et al., “A Bandwidth Efficient Architecture for Media
Processing,” In Proceedings of the 31st Annual International Symposium on
Microarchitecture, pages 3-13, Nov.-Dec. 1998.

[13] [RAMBUS-website] http://www.rambus.com/developer/quickfind_documents.html
[14] [Mosys-data sheet] http://www.mosysinc.com/prelease3/, MC80364K64, 64Kx64 PBSRAM.

A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro 14

[15] [HorowitzSRC’99] Mark Horowitz, et al., “The Future of Wires,” SRC White Paper:
Interconnect Technology Beyond the Roadmap, 1999, (http://www.src.org/cgi-
bin/deliver.cgi/sarawp.pdf?/areas/nis/sarawp.pdf).

[16] [MukaiISSCC’00] Hideo. Mukai, et al., “New Architecture for Cost-Efficient High-
Performance Multiple-Bank,” In Digest of Technical Papers ISSCC 2000, Pages 400-401, Feb.
2000.

[17] [ParisISSCC’99] Lluis. Paris, et al., “A 800MB/s 72Mb SLDRAM with digitally-Calibrated
DLL,” In Digest of Technical Papers ISSCC 1999, Pages 414-415, Feb. 1999.

[18] [GealowJSSC’99] Jeffrey C. Gealow, et al., “A Pixel Parallel Image Processor Using Logic
Pitch-Matched to Dynamic Memory,” IEEE Journal of Solid-State Circuits, Vol.34 No6,
pages 831-839, Nov. 1999.

Software Controlled Reconfigurable On-chip
Memory for High Performance Computing

Hiroshi Nakamura1, Masaaki Kondo1, and Taisuke Boku2

1 Research Center for Advanced Science and Technology, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan

{nakamura,kondo}@hal.rcast.u-tokyo.ac.jp
2 Institute of Information Sciences and Electronics, University of Tsukuba

1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8573, Japan
taisuke@is.tsukuba.ac.jp

Abstract. The performance gap between processor and memory is very
serious problem in high performance computing because effective perfor-
mance is limited by memory ability. In order to overcome this problem,
we propose a new VLSI architecture called SCIMA which integrates soft-
ware controllable memory into a processor chip in addition to ordinary
data cache. Most of data access is regular in high performance comput-
ing. Software controllable memory is better at making good use of the
regularity than conventional cache.
This paper presents its architecture and performance evaluation. In SCIMA,
the ratio of software controllable memory and cache can be dynamically
changed. Due to this feature, SCIMA is upper compatible with conven-
tional memory architecture. Performance is evaluated by using CG and
FT kernels of NPB Benchmark and a real application of QCD (Quantum
ChromoDynamics). The evaluation results reveal that SCIMA is supe-
rior to conventional cache-based architecture. It is also revealed that the
superiority of SCIMA increases when access latency of off-chip memory
increases or its relative throughput gets lower.

1 Introduction

Processor performance has been improved drastically by clock acceleration and
ILP (instruction-level parallelism) extraction techniques. Main memory perfor-
mance, however, has not been improved so much. This performance disparity
called memory wall problem[1] is very serious. To solve this problem, cache mem-
ory is widely used. However, cache is not effective in large scientific/engineering
applications[2] because data set is much larger than cache capacity. In high
performance computing (abbreviated as HPC hereafter) area, although future
advancement of semiconductor technology will certainly enlarge on-chip cache
size, the whole data set can never reside in data cache because the data size
itself grows in proportion to processing ability.

The ability of memory system is characterized by two factors, latency and
throughput. There have been proposed a lot of latency hiding techniques, such as
larger cache line, prefetching, lock-up free cache, and so on. However, all of these

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 15–32, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

16 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

latency hiding techniques lead to increase of the pressure on memory bandwidth.
Because the bandwidth of off-chip memory will not grow as rapid as processor
performance, reducing off-chip memory traffic is essentially required.

Therefore, it is important firstly to exploit temporal locality and making
good use of wide on-chip cache bandwidth. Secondly, decreasing the number of
off-chip memory accesses is helpful for reducing performance degradation caused
by long memory access latency.

As for the first issue of exploiting temporal locality, cache blocking [3] is a
well-known and promising optimization. Unwilling line conflicts, however, still
increase memory traffic and degrade performance. To solve this problem, good
tile size selection algorithm [4] and padding technique [5] have been proposed
so far. However, programs should be rewritten carefully depending on the detail
of both the cache structure and the data array structure. Moreover, these tech-
niques cannot completely remove line conflicts among different data arrays. For
example, they cannot avoid the unfortunate but frequent situations where data
with little reusability pollutes data cache and flushes out other data which will
be used soon.

As for the second issue, the number of off-chip memory accesses can be
decreased by making the size of each data transfer large. Adopting larger cache
line could be one solution. However, unnecessary data transfer must be avoided
because it wastes memory bandwidth which is the most valuable resource. Thus,
for non-consecutive data access, this solution is harmful.

The essential reason for these problems is that it is by far difficult for hard-
ware to control data location and data replacement. Because most of the data
accesses in HPC (High Performance Computing) applications are regular, it
is reasonable to control data location and replacement by software. Thus, we
propose a new VLSI architecture named SCIMA: Software Controlled Integrated
Memory Architecture. SCIMA integrates software-controllable addressable mem-
ory into processor chip as a part of main memory in addition to ordinary cache.
Hereafter, we call that memory “On-Chip Memory” (As opposed to that, we call
off-chip main memory “Off-Chip Memory”).

Since On-Chip Memory is explicitly addressed by software, only the required
data is transferred into the On-Chip Memory without flushing out other required
data. Unfortunate conflicts can be avoided. In this point, On-Chip Memory is
better at exploitation of temporal locality than cache. Therefore, SCIMA has
the potential to solve the problems of cache and achieve higher performance.

2 SCIMA

2.1 Overview

Fig. 1 shows the schematic view of the proposed architecture SCIMA. In SCIMA,
addressable On-Chip Memory is integrated into the processor chip in addition
to ordinary cache.

Location and replacement of data are controlled by software explicitly in On-
Chip Memory, whereas those are controlled by hardware implicitly in cache. We

Software Controlled Reconfigurable On-Chip Memory 17

On-Chip
Memory

Memory
 (DRAM)

ALU

register

NIA

Network

FPU

Cache

Fig. 1. Overview of SCIMA

employ SRAM as the On-Chip Memory. Since our target is HPC applications,
the whole data cannot reside in On-Chip memory even if DRAM is used. Thus,
we give higher priority to speed rather than capacity. Cache is still provided to
work for irregular data accesses.

2.2 Address Space

On-Chip Memory occupies one consecutive part of logical address space. We
assume On-Chip Memory is much larger than ordinary page. Then, frequent
TLB misses degrade performance seriously if On-Chip Memory is controlled by
ordinary TLB. Therefore, On-Chip Memory is treated as a large page. Two
special registers are introduced to identify the On-Chip Memory area as shown
in Fig. 2.

– On-Chip Address Mask Register (AMR): This mask register indicates the
size of On-Chip Memory. If the least significant m bits of AMR are 0, On-
Chip Memory size is 2mbyte.

– On-Chip Address Start Register (ASR): This register holds the beginning
logical address of On-Chip Memory. This address must be aligned to the
multiple of On-Chip Memory size.

The following equation tells whether the given address is within the On-Chip
Memory area or not.

if (a given address & AMR) == ASR then On−Chip Memory area (1)

Inclusion Relation Between On-Chip Memory and Cache
All the address space has a cacheable/uncacheable property. This property is

managed by TLB and page-table mechanisms like the ordinary current proces-
sors. In SCIMA, the On-Chip Memory space, which is not under the control of

18 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

0x000..0

0xfff..f
logical address space physical Memory

(Off-Chip)

On-Chip Memorya

A

B1
B2

Bn
:

11....1100.....00

b1
b2

bn
:

ASR AMR
b1

Processor Chip

TLB

Fig. 2. Address Space

TLB, is always handled as uncacheable. Therefore, there is no inclusion relation
between On-Chip Memory and cache.

2.3 Data Transfer Among Memory Hierarchy

The following two kinds of data transfers are available.

– register ↔ On-Chip Memory ↔ Off-Chip
– register ↔ cache ↔ Off-Chip Memory

Ordinary load/store instructions invoke transfers between registers and On-
Chip Memory when the accessed address is within On-Chip Memory area. Oth-
erwise, they access cache as usual and invoke line transfer when cache misses.

page-load and page-store Data transfers between On-Chip Memory and Off-
Chip Memory are invoked explicitly by page-load or page-store instructions which
are newly introduced. Notice that the term of page is different from ordinary page
used in virtual memory. In this paper, page is a data unit transferred by one
page-load or page-store. The size of page is assumed to be several KBytes. The
source/destination addresses and the size of data transfer are identified by these
instructions. These instructions can specify block-stride data transfer which can
pack non-consecutive data of Off-Chip Memory and transfer into a consecutive
area of On-Chip Memory. This is helpful for effective use of limited On-Chip
Memory area and Off-Chip bandwidth.

2.4 Reconfiguration of On-Chip Memory and Cache

Total memory size which is available within a processor chip depends on semicon-
ductor technology and the number of transistors devoted to the processor core.
It is a difficult problem to decide the best ratio of cache and On-Chip Memory

Software Controlled Reconfigurable On-Chip Memory 19

ASR

AMR

Way3 Way2 Way1 Way0

 SET LINE

11 0 0 0........

0 0x

On-Chip
Memory

Cache

WAY

0 0........

log(8k)log(4)

total cache size

WAY SIZE

...1

...x

OMV 1 WLR

23 1 0

100 1

Fig. 3. Example of On-Chip Memory and Cache Configuration

sizes under these constraints. The answer highly depends on the characteristics
of target applications. Thus, we propose a reconfiguration mechanism where On-
Chip Memory and cache share the hardware memory structure and the ratio of
them can be changed on the same hardware. Due to this feature, SCIMA is up-
per compatible with conventional memory architecture. This subsection shows
the hardware mechanism.

Hardware Mechanism
In addition to ASR and AMR described in section 2.2, we introduce the

following special registers for reconfiguration of On-Chip Memory and cache.

– Way Lock Register (WLR): The bit width of this register is equal to the
degree of cache associativity (the number of ways): If the bit of the corre-
sponding way is set to on, that way is locked as On-Chip Memory.

– On-chip Memory Valid(OMV): This register has 1 bit entry which indicates
whether any way is utilized as On-Chip Memory.

Fig. 3 shows an example of configurations. This figure illustrates the case
where 32KB 4way cache is divided into 16KB 2way cache and 16 KB On-Chip
Memory. On-Chip Memory area is assigned by a system call. When the system
call is executed, data in the corresponding ways is flushed out, the corresponding
bits of the WLR and OMV are set to on, and the right values are set to AMR
and ASR. The WAY bits of AMR indicate the number of ways locked as On-
Chip Memory and the WAY bits of ASR indicate the way from which On-Chip
Memory is allocated. In Fig. 3, the WAY bits of AMR are 10 and those of ASR
are 00. This indicates that two ways are utilized as On-Chip Memory and locked
beginning from way 0. Table 1 shows the possible configurations of On-Chip
Memory in the example of Fig. 33 .

3 Note that if OMV is 1, WLR is determined by the WAY bits of ASR and AMR.
Otherwise, all the bits of WRL is 0. Therefore, exactly speaking, WRL is redundant
information.

20 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

Table 1. Configuration of On-Chip Memory

On-Chip WAY bits WAY bits Ways utilized as
Memory size of ASR of AMR On-Chip Memory WLR OMV

32KB 00 00 way0,1,2,3 1111 1
16KB 00 10 way0,1 0011 1

10 10 way2,3 1100 1
8KB 00 11 way0 0001 1

01 11 way1 0010 1
10 11 way2 0100 1
11 11 way3 1000 1

0KB — — N/A 0000 0

Actions of Memory Access
When a memory access occurs, the accessed address is checked whether it is

within the On-Chip Memory area or not by using ASR and AMR (equation 1).
If the access is for On-Chip Memory, the WAY part of the accessed address bits
indicates the way to be accessed. In the example of Fig. 3, if the WAY part of
the accessed address is 00, Way 0 is accessed. The important point is that the
sets to be accessed are determined by SET bits of Fig. 3 no matter whether the
address is within On-Chip Memory or not. Due to this feature, critical path does
not get longer than ordinary cache access. The followings are the procedure of
memory access:

1. The corresponding sets decided by SET bits of the address are accessed. In
parallel with this access, whether the address is within On-Chip Memory
area or not is decided by ASR, AMR and OMV.

2. If the accessed address is within On-Chip Memory, the data from the cor-
responding way (decided by WAY bits) is selected. Otherwise, ways whose
WLR is 0 are accessed as ordinary cache.

2.5 Other Architectural Issues

We must consider other architectural issues. One is the guarantee of correct
access order of On-Chip Memory and the other is coherence problem between
cache and Off-Chip Memory. The former issue implies that execution of page-
load/page-store and load/store instructions should wait for the completion of
preceding those instructions if the accessed address is the same location on On-
Chip Memory. The latter issue implies that if a certain Off-Chip Memory area
is accessed by page-load/page-store instructions when cache holds the data of
that area, consistency between cache and Off-Chip Memory must be kept. See
[6] for the detail description of these issues.

2.6 Benefit of On-Chip Memory

The benefit of On-Chip Memory is summarized as follows.

Software Controlled Reconfigurable On-Chip Memory 21

1. better use of temporal locality
Even though temporal locality of data access is extracted, for example by

tiling, unwilling line conflicts prevent cache from making good use of the
locality. Especially, conflicts between data of plenty locality and those of
little locality are very harmful. However, such kinds of conflicts frequently
occur in HPC. On-Chip Memory can avoid such interferes because software
can do the control explicitly.

2. suppress of unnecessary data transfer
For non-consecutive or stride data access, unnecessary data in the same line
is transferred from off-chip memory. This is the waste of valuable off-chip
bandwidth and cache space. On-Chip memory avoids this unnecessary data
transfer by the block-stride transfer mechanism of page-load and page-store.

3. improvement of effective bandwidth
For consecutive data access, the number of data transfer is reduced by in-

voking a large amount of data transfer at a time. This is helpful for making
effective off-chip bandwidth closer to its theoretical bandwidth. This opti-
mization gets more important when the access latency increases. In ordinary
cache, this could be possible by using larger line. However, this also increases
the opportunity of line conflicts and unnecessary data transfer. On-Chip
Memory realizes a large amount of consecutive data transfer without these
sacrifices.

Since off-chip bandwidth will not grow as fast as on-chip bandwidth, reducing
off-chip traffic is essentially required. The first and the second benefits contribute
to the reduction of off-chip traffic. The third optimization contributes to the
relaxation of performance degradation caused by off-chip access latency.

3 Optimization of Benchmarks

In this paper, performance of cache-based architecture and SCIMA is evaluated
and compared by using two kernels (CG, FT) of NAS Parallel Benchmarks[7]
and QCD (Quantum ChromoDynamics) computation[8]. QCD is a practical ap-
plication used at Center for Computational Physics, University of Tsukuba[9]. In
the evaluation, each benchmark is optimized for cache architecture and SCIMA
respectively. In this section, we describe the overview of the benchmarks and
explain how to optimize them for the two architectures.

Table 2 shows the data sets of target programs used in the evaluation. For
saving simulation time, Class-W was selected in CG and FT. On the other hand,
the data size of QCD is fairly practical[10]. In QCD, we measured the required
time for executing the most time consuming part once. This part is executed so
many times in the real computation.

As mentioned later in Section 4.2, we assume the total size of cache/On-Chip
is 32KB. This size is quite small but reasonable for evaluating class-W benchmark
because cache and On-Chip Memory is usually smaller than the whole data set
in HPC.

22 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

Table 2. Data set of each programs

program data set
class W

Kernel CG - p: 7000 elements (double-precision)
- A: 7000×7000 (double-precision)

class W
Kernel FT - 128×128×32 (double-precision complex)

“G,R,B,V,T”: total 2.5MB
QCD “U”: 1.5MB

“M”: 3MB

*=

q a p

a(*,1) a(*,2)

cache OCM

(a) OCMp

*=

q a p

a(*,1) a(*,2)

cacheOCM

(b) OCMa

Fig. 4. Optimization for SCIMA in Kernel CG

3.1 NPB Kernel CG

The time consuming part of CG forms q = Ap, where A is sparse matrix and
p and q are vectors. The structure of the innermost loop is “sum = sum +
a(k)∗p(colidx(k))”. Therefore, A is accessed consecutively whereas p is accessed
in random. Another characteristic is that A has no reusability whereas p has
reusability.

The original code is optimized for cache-based architecture and SCIMA in
several ways as follows.

Cache-Opt: To exploit the reusability of p, blocking optimization is applied.
The computation is blocked in the same way as shown in Fig. 4 except that all
the data is of course accessed through cache.

In addition to blocking optimization, the program is optimized for SCIMA
in the following two ways.

SCIMA OCMp: The vectors p is accessed through On-Chip Memory as shown
in Figure 4-[a]. This optimization intends to have the benefit 1 of Section 2.6.

Software Controlled Reconfigurable On-Chip Memory 23

Using this optimization, the reusability of vectors p can be fully utilized without
interference within elements of the blocked vector p itself or other arrays.

SCIMA OCMa: The sparse matrix A is accessed through On-Chip Memory
as shown in Figure 4-[b]. This optimization intends to have the benefit 2 of Sec-
tion 2.6. High effective bandwidth is expected through this optimization because
large amount of data is transferred at once. Through this optimization, it is ex-
pected that reusability of vectors p is exploited better because no interference
between p and A occurs. This is the benefit 1 of Section 2.6.

3.2 NPB Kernel FT

The most time consuming part of this kernel is 3-D FFT. The FFT algorithm has
stride data access where the stride size is the power of 2. This leads to frequent
line conflicts. Moreover, there are plenty of temporal locality in the core FFT
part. Therefore, in the original benchmark code, blocking optimization is applied
and each tile is copied into a consecutive temporary area. Although the stride
data access still occurs in the part of data copy, frequent line conflicts are avoided
during the core FFT calculation. Because blocking optimization has already been
applied to the original code, we call the original code Cache-Opt.

SCIMA: In SCIMA, the temporary area for data copy is allocated on On-
Chip Memory. The data copy procedure is realized as stride data transfer from
Off-Chip Memory into On-Chip Memory. Thus, the benefit 3 of Section 2.6 is
expected. Moreover, reusability in the FFT computation would be exploited
better because no interference occurs in On-Chip Memory. This is the benefit 1
of Section 2.6.

3.3 QCD Computation

QCD is dynamics governed by quantum field theory, which is a problem of parti-
cle physics. In this theory, strongly interacting particles called hadrons are made
of fundamental quarks and gluon. Numerical simulation of QCD is formulated
on 4-dimensional space-time lattice.

In QCD computation, most of the computation is spent in solving a lin-
ear equation. The BiCGStab method, which is an iterative algorithm, is used
for solving the linear equation. We analyze the performance of the iteration in
BiCGStab.

The iteration consists of RBMULT, LOCALMULT and other routines called
inter-MULT. Note that RBMULT routine is the most time consuming part.
Table 3 illustrates the computation structure of the iteration. Lattice space is
divided into even and odd parts. For example, G e and G o reprensent even and
odd parts of array G respectively. The second line of Table 3, “B e(0.5), U(1.5)
→ G o(0.25)”, for instance, indicates that 0.25MB of array G o is computed by
accessing 0.5MB of array B e and 1.5MB of array U. Each array has the following
characteristics.

24 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

– G,R,B,V,T: These arrays have high inter-routine reusability. In addition,
they are accessed utmost 8 times in each RBMULT routine.

– U: This array is used only in RBMULT routine which is called 4 times in
the iteration. In each RBMULT, U is accessed only once.

– M: This array is accessed only in LOCALMULT routine. Moreover, only
even or odd part of M is accessed in one LOCALMULT. Thus, each data of
M is accessed only twice in one iteration.

Table 3. Iteration Structure in QCD (accessed data size [MB])

Routine source → destination
inter-MULT 1

RBMULT B e(0.5), U(1.5) → G o(0.25)
LOCALMULT G o(0.25),M o(1.5) → G o(0.25)

RBMULT G o(0.5), U(1.5) → V e(0.25)
LOCALMULT V e(0.25),M e(1.5) → V e(0.25)
inter-MULT 2

RBMULT R e(0.5), U(1.5) → G o(0.25)
LOCALMULT G o(0.25),M o(1.5) → G o(0.25)

RBMULT G o(0.5), U(1.5) → T e(0.25)
LOCALMULT T e(0.25),M e(1.5) → T e(0.25)
inter-MULT 3

To summarize these characteristics, while G, R, B, V and T have plenty of
reusability, U and M have no intra-routine reusability and a little inter-routine
reusability. However, since the iteration is repeated so many times, even U and
M are reused over the repeated iterations. We have optimized this computation
as follows.

Cache-Opt: To exploit reusability of “G,R,B,V,T”, blocking optimization is
applied.

SCIMA: “U,M” are accessed simultaneously with “G,R,B,V,T” in the iteration
loop. Therefore, if only cache is provided, the blocks of “G,R,B,V,T”, which have
plenty of reusability, may be flushed out from the cache because of the interfer-
ences with “U,M”. To avoid the problem, this code is optimized for SCIMA as
follows. “G,R,B,V,T” are still accessed through cache because LRU algorithm
would be the best for handling them. On the other hand, “U,M” are accessed
through On-Chip Memory to avoid interference with “G,R,B,V,T”. Moreover,
high throughput can be obtained by large data transfer size because “U,M” are
accessed consecutively to some extent. These optimizations intend to have the
benefit 1 and benefit 2 of Section 2.6.

Software Controlled Reconfigurable On-Chip Memory 25

Table 4. Assumptions in the Evaluation

Execution unit
- integer 2
- floating-point (multiply-add) 1
- floating-point (div,sqrt) 1
- load/store 1

Cache/On-Chip Memory latency 2cycle
Cache(On-Chip Memory) size 32KB
Cache associativity 4way
Cache line size 32, 64, 128, or 256B
page size 4KB
Instruction cache accesses all hit
Branch prediction perfect
Data cache structure lock-up free L1 cache
Execution order out-of-order

4 Performance Evaluation

4.1 Evaluation Environment

SCIMA is defined as an extension of existing architecture. In the evaluation,
MIPS IV is selected as the base architecture.

It would be preferable to develop an optimized compiler which can han-
dle the architectural extensions. In the evaluation, however, users specify which
data should be located on On-Chip Memory, when those should be transferred
between off-chip and on-chip memory, and which location of On-Chip Memory
should be used by directives in source programs. Giving directives is not difficult
because data accesses are fairly regular. Blocking optimization is also applied by
users.

These informations on the usage of On-Chip Memory are specified in source
program and compiled by ordinary MIPS compiler. We have developed a prepro-
cessor which inserts these informations into assembly code after the compilation.
We have also developed a clock level simulator which accepts the binary object
generated by existing compiler and interprets the informations inserted by the
preprocessor.

4.2 Assumptions for the Evaluation

Table 4 shows the assumptions used in the evaluation. These are common through-
out the evaluation.

We assume total on-chip memory (cache and On-Chip Memory) capacity is
32KB. We employ 4-way associative 32KB cache and assume four kinds of line
sizes, 32B, 64B, 128B, and 256B.

26 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

Table 5. Combination of cache and On-Chip Memory

cache size (associativity) On-Chip Memory size
(a) 32KB (4way) 0KB
(b) 24KB (3way) 8KB
(c) 16KB (2way) 16KB
(d) 0KB (0way) 32KB

By using the reconfiguration mechanism of section 2.4, four combinations of
cache and On-Chip Memory are possible as shown in Table 5. We use configu-
ration (a) as a cache-based architecture and configuration (b) or (c) as SCIMA
architecture. Here, configuration (d) is not considered at all. because no scalar
variable can be cached in this configuration, which obviously leads to poor per-
formance. In the evaluation, configuration (c) is selected in CG and FT, whereas
configuration (b) is selected in QCD. The decision on the configuration depends
on the property of optimizations and the size of data set.

The assumptions of perfect instruction cache and branch prediction are rea-
sonable because time consuming part of HPC applications consists of regular
loops.

4.3 Classification of Execution Cycles

The execution time is classified into CPU busy time, latency stall, and through-
put stall. Total cycles are obtained under the above assumption. Throughput
stall is defined as the cycles which could be saved from total cycles if Off-Chip
Memory bandwidth were infinite. Latency stall is defined as the cycles which
could be saved further if Off-Chip Memory latency were 0 cycle. The rest is the
CPU busy time.

Each time is obtained as follows. First, Cnormal, Cth∞, and Cperfect are mea-
sured by simulation. Here, Cnormal indicate the cycles under the assumption of
Table 4. Cth∞ indicate the cycles where Off-Chip Memory bandwidth is infinite.
Cperfect indicate the cycles where Off-Chip Memory bandwidth is infinite and
Off-Chip Memory latency is 0cycle. Then, cycles of each category is calculated
as follows.

CPU busy time = Cperfect

latency stall = Cth∞ − Cperfect

throughput stall = Cnormal − Cth∞

5 Evaluation Result

5.1 Result

Fig. 5 illustrates the execution cycles and their breakdowns of each program.
In this figure, “Original” represents original code which is not modified from

Software Controlled Reconfigurable On-Chip Memory 27

the original program. “Cache-Opt” and “SCIMA” represent modified codes op-
timized for cache and SCIMA architecture respectively. In the case of FT, only
“Cache-Opt” and “SCIMA” is given because “Original” code itself have opti-
mizations for cache as mentioned in Section 3.2.

0

5M

10M

15M

20M

25M

30M

ex
ec

ut
io

n
cy

cl
es

32B 64B 128B 256B line size

Original Cache-Opt SCIMA
(OCMp)

SCIMA
(OCMa)

32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B

CPU busy time
latency stall

throughput stall

[A] Kernel CG

0

Cache-Opt SCIMA

100M

150M

200M

50M

32B 64B 128B 256B line size 32B 64B 128B 256B

ex
ec

ut
io

n
cy

cl
es CPU busy time

latency stall

throughput stall

[B] Kernel FT

0

10M

20M

40M

30M

50M

Original Cache-Opt SCIMA
32B 64B 128B 256B line size 32B 64B 128B 256B 32B 64B 128B 256B

ex
ec

ut
io

n
cy

cl
es CPU busy time

latency stall

throughput stall

[C] QCD

Fig. 5. Evaluation Result

Kernel CG
The best partitioning (tiled size) is selected through explorative experiments

for each optimization. As a result, “Cache-Opt”, “OCMp”, and “OCMa” are
partitioned into 7, 4, and 7 tiles respectively.

“Cache-Opt” achieves about 1.9 times higher performance than “Original”
when the line size is 32B. This is because “Cache-Opt” can exploit the reusability
of vector p, and consequently, latency stall and throughput stall are considerably
reduced.

“OCMp” in which p is accessed through On-Chip Memory achieves slightly

28 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

higher performance than “Cache-Opt”. This illustrates the reusability of p is
exploited further on On-Chip Memory. This is brought by the benefit 1 of Sec-
tion 2.6. However, the improvement is not significant. In the Kernel CG, because
access pattern of each array except p is regular and consecutive, cache blocking
is quite useful.

“OCMa” in which sparse matrix A is accessed through On-Chip Memory is
1.3 times faster than “Cache-Opt” for 32B cache line. This is because line con-
flicts between p and A are avoided and because large granularity of data transfer
by page-load/page-store reduces latency stall. This is the expectant result of opti-
mization strategy in Section 3.1. However, throughput stall of “OCMa” increases
for larger cache line because line conflicts between p and colidx increase.

“OCMa” achieves the highest performance for 32B and 64B cache line whereas
“OCMp” is the fastest for 128B and 256B cache line. This indicates that the best
optimization depends on cache line

Kernel FT

“SCIMA” achieves 2.1-1.8 times higher performance than “Cache-Opt”. This
superiority is brought by the effectiveness of block-stride transfer feature of page-
load/page-store. Due to this feature, latency stall of “SCIMA” is reduced to
less than 1% compared with “Cache-Opt”. Throughput stall is also fairly small
regardless of cache line size in “SCIMA”. On the contrary, throughput stall of
“Cache-Opt” increases extremely for larger cache line size because of unnecessary
data transfer. As mentioned in Section 3.2, a tile is copied into a temporary
area, In the optimization, the size of each tile was selected as 8KB, which is
the capacity of one set within data cache, in order to avoid interferences with
other data. Then, the blocked data forms a 4 × 128 2-D array (16B for each
data). Thus, when cache line is larger than 64B (= 4 × 16B), unnecessary data
transfers occur. SCIMA does not suffer from this problem due to block-stride
data transfer.

QCD

To compare “Original” with “Cache-Opt”, there is little difference in perfor-
mance. This illustrates that even if blocking optimization is applied, performance
is not improved drastically because of the interferences between “G,R,B,V,T”
and “U,M”. However, “SCIMA” in which “U,M” are accessed through On-Chip
Memory archives 1.4 times higher performance than “Cache-Opt” and 1.6 times
higher performance than “Original” for 32B cache line.

Table 6 shows the traffic of Off-Chip Memory for 32B cache line. The sec-
ond column “cache” represents the traffic between Off-Chip Memory and cache,
whereas the third column “On-Chip Memory” represents the traffic between
On-Chip and Off-Chip memories. The last column represents the total Off-Chip
Memory traffic. As seen from Table 6, the total traffic of “SCIMA” is about
92% compared with “Cache-Opt”. This indicates that unwilling interferences
are avoided by using On-Chip Memory. In this way, our On-Chip Memory con-
tributes to the reduction of Off-Chip Memory traffic.

Software Controlled Reconfigurable On-Chip Memory 29

Table 6. Off-Chip Memory Traffic of QCD (32B cache line)

optimization cache On-Chip Memory total
Original 26.8MB 0MB 26.8MB

Cache-Opt 22.4MB 0MB 22.4MB
SCIMA 10.4MB 11.4MB 20.8MB

5.2 Discussion

As seen from Fig. 5, for all the benchmarks, latency stall decreases but through-
put stall increases for larger line size. This is because more line conflicts are
likely to occur for larger line. Therefore, increasing the size of line does not
always bring higher performance. Considering the future direction of the semi-
conductor technology, relative Off-Chip Memory latency is expected to increase
and relative Off-Chip Memory bandwidth is expected to decrease. Therefore, it
is indispensable to reduce Off-Chip Memory traffic and to make data transfer
size larger. Next, we discuss the effectiveness of SCIMA from this viewpoint.

Fig. 6 shows the simulation results of QCD under the assumption represent-
ing future semiconductor technology. Performance is evaluated under the three
Off-Chip Memory latency (40cycle, 80cycle, 160cycle), and three Off-Chip Mem-
ory throughput (4B/cycle, 2B/cycle, 1B/cycle). These assumptions imply future
long memory latency and relative narrow bus bandwidth. Fig. 6-[A] is the same
as Fig. 5-[C].

From Fig. 6, it is observed that latency stall increases for longer latency and
throughput stall increases for narrower bus bandwidth. Consequently, overall
performance is greatly degraded as increasing Off-Chip Memory latency and nar-
rowing bus bandwidth. However, the performance of “SCIMA” is less degraded
than that of “Cache-Opt”. For example, to compare Fig. 6-[A] (4B/cycle Off-
Chip Memory throughput and 40cycle Off-Chip Memory latency) with Fig. 6-[I]
(1B/cycle Off-Chip Memory throughput and 160cycle Off-Chip Memory latency)
for 128B cache line, performance disparity between “Cache-Opt” and “SCIMA”
is widened from 1.2 to 1.4. This result indicates that effectiveness of SCIMA will
grow in the future.

6 Related Works

There have been many studies on integrating on-chip memory into processor
chip besides a cache. Ranganathan et. al.[11] proposed associativity-based par-
titioning for reconfigurable cache. The mechanism of their cache is similar to
our reconfigurable on-chip memory. Chiou et. al.[12] also proposed associativity-
based partitioning mechanism which selectively lock some parts of data cache
for avoiding unwilling data replacement. However, they do not use their recon-
figurable caches as software controllable memory and do not pay much attention

30 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es CPU busy time

latency stall
throughput stall

[A] TR=2:1, L=40

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA
ex

ec
ut

io
n

cy
cl

es

[B] TR=2:1, L=80

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[C] TR=2:1, L=160

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[D] TR=4:1, L=40

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[E] TR=4:1, L=80

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[F] TR=4:1, L=160

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[G] TR=8:1, L=40

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[H] TR=8:1, L=80

0

20M

40M

60M

80M

100M

120M

140M

160M

180M

Original Cache-Opt SCIMA

ex
ec

ut
io

n
cy

cl
es

[I] TR=8:1, L=160

Fig. 6. Evaluation Result of QCD under Future Technology (“TR” represents through-
put ratio between On-Chip Memory and Off-Chip Memory [On-Chip:Off-Chip] and L
represents Off-Chip Memory latency [cycle])

Software Controlled Reconfigurable On-Chip Memory 31

how to supply data from off-chip memory. There is a DSP processor which im-
plements reconfigurable cache[13]. However, it does not focus on the reduction
of Off-Chip Memory traffic in HPC. The objective of SCIMA is to make good
use of On-Chip Memory by user control and to reduce Off-Chip Memory traffic
in HPC.

There have been proposed some processors which adopt small scratch pad
RAM [14][15]. However, those scratch pad RAMs are used for specific applica-
tions. On the other hand, the target of SCIMA is wide area of HPC applications.
Compiler-Controlled Memory[16] is a small on-chip memory which is controlled
by compiler. However, this memory is used for only spill code. On-Chip Memory
of SCIMA, on the other hand, can be used for all the data if required.

The target of SCIMA is wide area of HPC applications which have large
data set. SCIMA realizes flexible and explicit data transfer between on-chip and
off-chip memory. This is the main difference between our SCIMA and other
works.

7 Concluding Remarks

We presented a novel processor architecture SCIMA which has software-controllab
addressable memory in addition to ordinary cache. The data location and re-
placement of On-Chip Memory are controlled by software. Due to this feature,
SCIMA can control data transfer among memory hierarchy very flexibly. SCIMA
has upper compatibility with conventional memory architecture. On-Chip Mem-
ory and cache are unified in SCIMA. Therefore, if the whole on-chip memory is
used as cache, SCIMA becomes the same as conventional processors.

We presented performance evaluation of SCIMA by using three benchmarks.
The evaluation results reveal that SCIMA achieves higher performance than
cache-based architecture by reducing both throughput stall and latency stall.
The benefit of SCIMA comes from the following features. Firstly, SCIMA can
fully exploit temporal locality because unwilling line conflicts are successfully
avoided. Secondly, SCIMA can suppress unnecessary data transfer by block-
stride data transfer. Finally, SCIMA can improve effective bandwidth by realiz-
ing a large amount of consecutive data transfer.

Considering the future direction of the semiconductor technology, off-chip
memory latency is expected to increase and relative off-chip memory bandwidth
is expected to decrease. Therefore, it is indispensable to reduce off-chip memory
traffic and to make data transfer size larger. SCIMA achieves high performance
by realizing both issues. This indicates that effectiveness of SCIMA will grow in
the future.

From these results, it is concluded that SCIMA is very effective for high
performance computing. We are planning to evaluate SCIMA on other wider
variety of applications and to design SCIMA in detail for verifying the impact
on clock frequency.

32 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

Acknowledgment

We thank the members of the Research Center for Computational Physics, Uni-
versity of Tsukuba for their helpful comments and suggestion. This work is par-
tially supported by the Research for the Future Program of JSPS in the ”Com-
putational Science and Engineering” Field (Project No. JSPS-RFTF 97P01102).

References

1. D. Burger, J. Goodman, and A. Kagi, “Memory Bandwidth Limitation of Future
Microprocessor”, Proc. 23rd Int’l Symp. on Computer Architecture, pp.78–89, 1996

2. D. Callahan and A. Porterfield, “Data Cache Performance of Supercomputer Ap-
plications”, Proc. of Supercomputing ’91, pp.564–572, 1990.

3. M. Lam, E. Rothberg and M. Wolf, “The cache performance and optimizations of
Blocked Algorithms”, Proc. ASPLOS-IV, pp.63–74, 1991

4. S. Coleman and K. S. McKinley, “Tile size selection using cache organization and
data layout”, Proc. of PLDI’95, pp.279–289, June 1995.

5. P. Panda, H. Nakamura, N. Dutt and A. Nicolau, “Augmenting Loop Tiling with
Data Alignment for Improved Cache Performance”, IEEE Transactions on Comput-
ers, Vol 48, No. 2, pp.142–149, 1999

6. M. Kondo, H. Okawara, H. Nakamura, T. Boku and S. Sakai, “SCIMA: A Novel
Processor Architecture for High Performance Computing”, Proc. of HPC-Asia 2000,
pp.355–360, May 2000

7. D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0”, NASA Ames Research Center Report, NAS-05-020, 1995.

8. S. Aoki, R. Burkhalter, K. Kanaya, T. Yoshié, T. Boku, H. Nakamura, Y. Ya-
mashita, “Performance of lattice QCD programs on CP-PACS”, Parallel Computing
25, pp.1243–1255, 1999

9. http://www.rccp.tsukuba.ac.jp/
10. M. Kondo, H. Okawara, H.Nakamura, and T. Boku, “SCIMA: Software Controlled

Integrated Memory Architecture for High Performance Computing”, ICCD-2000,
pp.105–111, Oct. 2000

11. P. Ranganathan, S. Adve and N. Jouppi, “Reconfigurable Caches and their Ap-
plication to Media Processing” Proc. 27th Int’l Symp. on Computer Architecture,
pp.214-224, 2000

12. D. Chiou, P. Jain, S. Devadas, and L. Rudolph, “Application-Specific Memory
Management for Embedded Systems Using Software-Controlled Caches”, Technical
Report CGS-Memo 427, MIT, 1999

13. S. Agarwala, C. Fuoco, T. Anderson, and D. Comisky, “A multi-level memory
system architecture for high-performance DSP applications”, ICCD-2000, pp.408–
413, Oct. 2000

14. Sony’s emotionally charged chip. MICROPROCESSOR REPORT, Vol. 13, No. 5,
1999.

15. Strongarm speed to triple. MICROPROCESSOR REPORT, Vol. 13, No. 6, 1999.
16. K. Cooper and T. Harvey, “Compiler-controlled memory”, Proc. of ASPLOS-VIII,

pp.2–11, 1998.

Content-Based Prefetching: Initial Results

Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

University of Colorado
Department of Computer Science

Boulder, CO 80309
{rcooksey, dennisc, grunwald}@cs.colorado.edu

Abstract. Memory latency, the time required to retrieve a specified datum from
memory, is currently the largest limitation for high-performance computers. Mem-
ory prefetching attempts to reduce the memory latency by moving data from mem-
ory closer to the processor. Different prefetching mechanisms attempt to model
access patterns that may be used by programs. For example, a stride or stream
prefetcher assumes that programs will access memory in a linear pattern. In appli-
cations that utilize a large number of dynamically allocated objects, the memory
access patterns can become very irregular, and difficult to model.
This paper proposes content-based prefetching, a method of data prefetching that
attempts to overcome the problems introduced by the irregular memory access
patterns seen in pointer-intensive applications, thus allowing prefetches of “pointer
chasing” references. Content-based prefetching works by examining the content
of data as it is moved from memory to the caches. Data values that are likely to
be addresses are then translated and pushed to a prefetch buffer. Content-based
prefetching has the capability to prefetch sparse data structures, including graphs,
lists and trees.
In this paper we examine the issues that are critical to the performance and prac-
ticality of content-base prefetching. The potential of the content-aware prediction
mechanism is demonstrated and compared to traditional stride prefetching tech-
niques.

1 Introduction

1.1 Overview

Most prefetch mechanisms work by recording the history of load instruction usage,
indexing on either the address or the effective address of the load instruction [6,20]. This
requires the prefetcher to have observed the load instruction one or more times before
an effective address can be predicted. This method can work well for loads that follow
an arithmetic progression, but does not show good performance for pointer loads that
may exhibit a more irregular access pattern. An alternative mechanism is to try to find
a correlation between miss addresses and some other activity. The correlation [5] and
Markov [10] prefetchers record patterns of miss addresses in an attempt to predict future
misses, but this technique requires a large correlation table and a training phase for the
prefetcher.

Compiler based techniques have been proposed which insert prefetch instructions
at sites where pointer dereferences are anticipated. Luk and Mowry [15] showed that

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 33–55, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

34 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

taking a greedy approach to pointer prefetching can improve performance despite the
increased memory system overhead. Lipasti et al. [14] developed heuristics that consider
pointers passed as arguments on procedure calls and insert prefetches at the call sites for
the data referenced by the pointers. Ozawa et al. [19] classify loads whose data address
comes from a previous load as list accesses, and perform code motions to separate them
from the instructions that use the data fetched by list accesses.

Since prefetch mechanisms target different classes of program references, they can
be combined to yield a more effective total prefetching behavior; this was explored for the
Markov prefetcher [10] and it was found that stride prefetchers improve the performance
of the Markov prefetcher by filtering references with arithmetic progressions, leaving
more table space for references with different behavior.

In this paper we examine a technique that attempts to predict addresses in pointer-
intensive applications using a hardware technique. In general the current hardware-only
predictors have two main limitations: they can only predict one instance ahead of the
current load address, and they only work with linked-lists. The predictor being pro-
posed here has no built-in biases toward the layout of the recursive data structures being
prefetched, and has the potential to run many instances ahead of the load currently being
executed by the processor. We will show this is a requirement for pointer-intensive ap-
plications, which traditionally do not provide sufficient computational work for masking
the prefetch latency. Some hybrid prefetch engines can run several instances ahead of
the processor, but they require a priori knowledge of the layout of the data structure,
and in some cases, the traversal order of the structure.

The prediction strategy being proposed in this paper is based not on the history of load
addresses, but on the content of the load itself. The content-based prefetcher borrows
techniques from conservative garbage collection [2]. When data is demand-fetched from
memory, each word of the data is examined for a likely address. The memory controller
maintains a shadow translation lookaside buffer (TLB) that both establishes what values
are likely addresses and provides a virtual-to-physical mapping to allow the physical
address to be prefetched. The physical addresses are added to a prefetch request queue
and then transferred when the memory bus becomes idle.

The remainder of this paper is organized as follows. In Section 2, we present in detail
the proposed content-based prefetching mechanism. Section 3 provides a characteriza-
tion of the workloads that will be used to evaluate the prefetch mechanism. Section 4
presents some of the preliminary results collected from simulation models that were
constructed to test the feasibility of content-aware data prefetching. Section 5 presents
a survey of both software and hardware prefetching, with a focus on the prior art that
is most relevant to the work being presented in this paper. And finally, in Section 6, we
discuss our contributions and directions for future work

2 Proposed Prefetching Scheme

2.1 Brief Overview

The content-based prefetcher works by examining the content of loads that either miss
in the L1 data cache, or access the main memory. If the content is determined to likely be
an address, that address is then loaded from memory into a prioritized prefetch request

Content-Based Prefetching: Initial Results 35

L1 DATA

CACHE

L2 UNIFIED

CACHE

MAIN

MEMORY

PREFETCH

BUFFER

L2 BUS

MEMORY
BUS

SHADOW

TLB

ADDRESS

PREDICTOR

CONTENT−BASED PREFETCHER

Fig. 1. Content-based Prefetcher Architecture.

queue, and when the memory bus is available, the address is pushed up the memory
hierarchy chain towards the L1 data cache (see Figure 1). To determine if the content of
a load is possibly an effective address, the content-based prefetcher maintains a shadow
TLB.

2.2 Trigger Mechanism

All data loads first check the L1 data cache. If a load miss occurs, the prefetch buffer
is checked. If the load hits in the prefetch buffer, the appropriate cache line is copied
into the L1 data cache and the load request is satisfied. To alleviate any coherence issues
between the prefetch buffer and the L1 data cache, the prefetch buffer entry is invalidated
once the data is moved from the prefetch buffer to the data cache. If a subsequent miss
occurs in the prefetch buffer, the miss address is sent to the content-based prefetcher
located in the memory controller.

Our initial mechanism simply monitored the load address reference stream seen at
main memory (essentially the L2 miss reference stream). This only allowed a limited
number of opportunities for the content-based prefetcher to make a prediction. If the
prefetcher was successful, this reference stream was reduced even further. For this reason
it was decided to also monitor (snoop) the L1 miss address stream.

2.3 Prediction Mechanism

The main memory is accessed to get the data located at the effective address of the
missed load. If the load is a pointer-load, this data is the effective address of a future

36 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

load. To determine if the data is such an address, the candidate address is checked using
the shadow TLB. If the content of a candidate load results in a shadow TLB hit, the
content is deemed to be an address. The main memory is once again accessed to obtain
the data for a prefetch located at the newly determined load address. This newly initiated
prefetch request is placed into a prioritized prefetch request queue where it waits to be
pushed up the memory chain. The content-based prefetcher also incorporates a next-line
prefetcher. For every content-determined prefetch request, a prefetch request for the next
cache line is automatically placed into the prefetch request queue.

2.4 Recursive Scan

Before any prefetch requests are sent towards the L2 cache, the prefetched cache line itself
is checked for candidate effective addresses. This recursive check allows the possible
detection of next pointers in the case of linked lists, or child pointers in the case of a
tree structure. It also provides the same functionality as the look-head program counter
of the stride prefetcher: it allows the prefetcher to run ahead of the processor.

The recursive prefetch requests are placed into the prefetch request queue, ordered
by the level of recursion at which the likely address was predicted. This results in
a breadth-first ordering of the prefetch requests. There is no limit to the number of
recursive levels that the prefetcher is allowed to scan. In an effort to keep the prefetch
requests as timely and as least-speculative as possible, a primary prefetch request, a
request that originated from an L1 load miss (that is, a non-recursive prediction), causes
all the outstanding prefetch requests still residing in the prefetch queue to be squashed.
The prefetch request queue is scanned before any new requests are added to ensure no
duplicate requests reside in the queue.

2.5 Data Movement

The movement of data within this model does place new requirements on the memory
hierarchy to handle memory requests that were not initiated by the processor. When a
memory request is generated by the processor, and a miss occurs, an entry is placed in a
miss status handling register (MSHR) to record the miss. This provides the cache with
the ability to have multiple outstanding misses. When the request has been satisfied and
is propagating up the memory chain back towards the CPU, it is guaranteed to find a
matching MSHR entry that contains information about the request.

In the model being presented, the prefetch requests are initiated at the memory level,
and thus as they move up the chain there is no longer a guarantee that a matching MSHR
entry will be found. It is possible to encounter a matching entry if a demand fetch is
outstanding for the same cache block. If no matching MSHR entry is found, the request
can be stored in a free MSHR entry while waiting to continue its movement towards
the processor. If a matching entry is found, the prefetch request will be merged with
the demand fetch’s MSHR entry, resulting in a partial masking of the demand fetch’s
load latency. Any demand fetch moving up the chain that fails to find a matching MSHR
entry will be dropped, as it will have already been satisfied by a earlier prefetch request.
If the address of the prefetch request is currently not residing in the L1 data cache or the
prefetch buffer, and no partial masking has occurred, the prefetch request is placed into

Content-Based Prefetching: Initial Results 37

the prefetch buffer. A prefetch buffer is used for the reasons expected. Prefetched data
is speculative, and placing the data directly into the cache could inadvertently displace
valid cache lines which are still within the active working set. It also keeps a demand
fetch from displacing what would have been a useful prefetch before it could be used.

3 Workload Characteristics

3.1 Synthetic Benchmark

To evaluate the content-based prefetch mechanism, a synthetic benchmark was created
that executes long sequences of only pointer-loads. The benchmark does not provide
any computational work between loads, and is usable only as a tool for measuring the
feasibility of the prefetch mechanism.

This application creates a randomly connected graph of 64-byte nodes. The node
size equals the block line size of the various caches, thus reducing any locality benefit
the memory system may have gained by having multiple addresses per cache line. Each
node points to a single, randomly selected node. The application then repeatedly selects
a node, follows that node for 50 pointer traversals, and then selects another starting point
to avoid being caught in a loop in the structure. See Figure 2. By using a large array
(many times the size of the L1 data cache), and randomly accessing members of the
array, this synthetic application should produce large cache miss rates.

for (int nodes = 0; nodes < REPS; nodes++) {
void *here = array[nodes];
void *there;

for (int refs = 0; refs < 50; refs++) {
there = *here;
here = there;

}
}

Fig. 2. Synthetic benchmark source code.

3.2 Olden Benchmark Suite

The Olden benchmarks [23] were originally created to test the Olden C* compiler for
the Thinking Machines CM-5. The compiler used software caching and computation
migration to improve the performance of programs that used dynamic structures [4]. The
initial benchmarks have been stripped of the CM-5 specific code, resulting in sequential
code which runs on uniprocessor machines. It has become standard practice to use the

38 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

uniprocessor version of the Olden benchmarks when performing research on prefetching
mechanisms that target pointer-intensive workloads.

The Olden applications are a collection of relatively small applications, each per-
forming a monolithic task. These tasks include sorting, graph optimizations, graphic
routines, and scientific code. They manipulate dynamically allocated data structures,
which are usually organized in lists or trees, rarely in arrays of structures. For this paper
only a subset of the benchmarks were evaluated. This subset includes the majority of
data structure types found in the full benchmark suite. A summary of the benchmark set,
including a brief description, type of linked data structure used, and input parameters,
is provided in Table 1.

Table 1. Olden benchmarks.

Benchmark Description Data Organization Input

bisort Sort of integers using disjoint bitonic sequences binary-tree 250000
em3d Electromagnetic wave propagation in a 3D object linked lists 2000 100 75
health Columbian health care simulation double-linked lists 5 500

perimeter Perimeters of regions in images quad-tree 10

Table 2 summarizes the dynamic instruction characteristics of each Olden appli-
cation. The table contains the total number of instructions executed and then provides
the percentage of instructions that correspond to memory operations (divided into loads
and stores), integer operations, floating point operations, control transfers (including un-
conditional branches, call/return branches used for subroutines or conditional branches)
and the percentage of “miscellaneous” instructions. Also shown is the percentage of
branches that are “taken” for each application since this provides some features of the
loop-density in each application.

Table 2. Olden benchmarks: Instruction mix as a percentage of total instructions executed.

Control
Program Instructions Memory Int. FP. Br Subr Cbr Misc

Loads Stores Ops Ops Num % Taken

bisort 291,276,993 32.00 15.83 35.98 0.00 0.81 6.30 9.06 51.85 0.00
em3d 840,666,611 31.35 5.21 44.19 7.52 0.05 1.52 10.13 70.63 0.00
health 185,371,777 37.95 12.07 30.59 0.70 0.29 2.32 16.04 89.81 0.00
perimeter 844,715,547 15.87 9.19 52.22 0.00 2.16 9.98 10.55 29.24 0.00

As a whole the Olden benchmarks are similar to the integer benchmarks found in
other benchmark suites (e.g. SPEC). They do differ in the area of memory instructions.
The percentage of load and store instructions is greater (over 40% in three of the bench-
marks), but this memory overhead is to be expected in applications that are allocating
and modifying dynamic data structures. The side-affect of the increased memory in-

Content-Based Prefetching: Initial Results 39

struction percentage is a reduction in the integer operation percentage, and a decrease
in the amount of computational work available to mask the memory operations.

The L1 data cache miss rates, with no prefetching (referred to as the base case in
the paper), are given in Table 3. These miss rates were measured using an 8KB, 2-way
set associative cache with 64 byte cache blocks. This is the standard L1 data cache
configuration used throughout this paper. Surprisingly both bisort and perimeter have
very small miss rates. These small a priori miss rates do not provide a lot of opportunity
for a prefetcher to improve the memory system performance of these applications.

Table 3. Olden benchmark L1 data cache miss rates.

Loads L1 Data Cache
Benchmark Executed Misses Miss %

bisort 93,217,887 3,198,387 3.43
em3d 263,623,159 38,762,235 14.70
health 70,347,560 18,836,688 26.78

perimeter 126,128,928 5,603,401 4.44

The following subsections provide an examination of each of the Olden benchmarks
being used in this paper. This includes a brief description of the task being performed,
a discussion of the data structures used, how they are accessed, and an evaluation of
whether the content-based prefetch mechanism presented in this proposal will provide a
performance improvement. ATOM [28] was used to locate those segments of code that
were the largest contributors to the application’s poor cache performance.

Bisort. The main data structure in bisort is a binary tree. The tree is generated at
the start of the program, and is populated with a set of randomly generated integers.
The program then performs both a forward and backward sort of this data. The sorting
algorithm creates a bitonic sequence in each subtree, and then merges the subtrees to
obtain the sorted result. The definition of a tree node is given in Figure 3.

struct node {
int value;
struct node *left;
struct node *right;

}

Fig. 3. Bisort binary-tree node definition.

As indicated earlier, bisort exhibits fairly good cache performance without assistance
from prefetchers. Table 3 shows that the L1 cache miss rate is less than 3.5%. This does

40 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

not provide many opportunities for a prefetcher to improve the cache performance. This
low miss rate can be attributed somewhat to the binary-tree’s layout in memory. The
tree is generated in traversal order, with each data cache line able to hold two tree
nodes. This leads to the program benefiting from both spatial and temporal locality.
The spatial locality can interfere with the content-based prefetchers ability to issue
prefetches. Unlike a stride prefetcher that has the benefit of examining the entire L1
memory reference stream, the content-based prefetcher only sees the L1 miss reference
stream. The reduced L1 cache miss rate due to data locality reduces the miss reference
stream, which reduces the opportunities provided to the content-based prefetcher.

An examination of bisort shows that over 90% of the cache misses occur in Bimerge(),
which contains both loop control structures and recursive calls. A more detailed exami-
nation shows the majority of the misses (over 88%) can be attributed to a specific set of
loads - those loads that reference the right child of a given node. This is seen both with
and without prefetching. This cache miss behavior leads to a discussion of the overall
difficulty of prefetching nodes of a tree-based data structure. While the content-based
prefetcher is not intentionally biased against tree-based structures, the current imple-
mentation of the prefetcher shows poor performance for applications that use tree-based
data structures. This is not really a fault of the prefetcher, but an indication of how dif-
ficult it is to issue timely and useful prefetches for such structures. The prefetcher will
examine each tree node, find the left and right pointer, and issue a prefetch request for
each. During a normal in-order tree traversal, the dominate traversal path used in bisort,
the left child pointers will be followed until a leaf node is encountered. During this initial
depth-first traversal, the prefetcher will be issuing prefetches for both the left and right
child nodes as it encounters each node on the initial path to the leaf node. For a tree
with a large number of levels, such as found in bisort, the right child prefetches, while
potentially useful, are being initiated well in advance of their use. They will most likely
be replaced in the prefetch buffer before having the opportunity to be useful. In practice
this is seen by the high data cache miss rates when a right child pointer is followed.

The current breadth-first approach of the content-based prefetcher will prove ben-
eficial when a right child node reference closely follows a left child reference, which
most likely occurs near the leaf nodes. Here the right child prefetches will have a higher
probability of residing in the prefetch buffer and eliminating a potential cache miss. Thus
for bisort, the predominate cache miss will still be right child pointer references, with
the content-based prefetcher providing a modest reduction in the overall L1 data cache
miss count.

EM3D. EM3D models the propagation of electromagnetic waves in a 3D object. This
object is represented as a bipartite graph containing both E nodes and H nodes. At each
time step of the simulation, the E node values are updated using the weighted sum of the
neighboring H nodes. This process is repeated for the H nodes. The main computation
loop consists of walking down a list of nodes, obtaining the values of neighboring nodes,
and using those values to update the current node.

Over 95% of the L1 data cache misses occur in the function compute nodes() (see
Figure 4). While the outer loop is a classic example of the pointer-chasing problem, the
inner loop which contains the list traversals is not. The list traversals are actually array

Content-Based Prefetching: Initial Results 41

traversals, with the individual node addresses being calculated, not loaded. For the inner
loop where the bulk of the misses result from array and scalar references, content-based
prefetching should yield little improvement. The prefetcher should detect the pointer-
chasing outer loop, but the improvement will be minimal as the length of the traversals
performed in the loop are small.

void compute nodes(node t *nodelist) {
int i;

for(; nodelist; nodelist = nodelist->next);
for(i=0; i < nodelist->from count; i++);

node t *other node = nodelist->from nodes[i];
double coeff = nodelist->coeffs[i];
double value = other node->values;

}
}

}

Fig. 4. Function compute nodes() from the em3d benchmark.

Health. Health simulates the Columbian health care system. Using the terminology
from [25], health utilizes a “backbone-and-ribs” structure. The “backbone” is a four-way
tree, with the “ribs” being doubly linked lists. Each node of the tree represents a hospital,
and at each of these nodes is a linked-list of patients. At each time step of the simulation,
the tree is traversed, and the patients are evaluated. Upon evaluation, the patients are
either treated, or they are passed up the tree to the parent node.

Close to 90% of the L1 data cache misses are involved in the linked-list traversals in
the two functions addList() and
check patients waiting(). Very few misses result from the traversal of the quad-tree. This
is not surprising as the quad-tree is actually rather small, is created in traversal order, and
remains unchanged during the execution of the program. The patient lists are modified
frequently, and thus are doubly linked (contain both a back and forward pointer) to make
the insertion and deletion of patients (nodes) easier. The linked-list node definitions
are given in Figure 5. The list traversals are performed in a pointer-chasing manner,
and should benefit significantly from the content-based prefetcher. But, the List node
structure may limit this benefit somewhat. By being doubly linked, the back pointer will
cause prefetches to be issued for the previous node visited, a prefetch for a data item that
is obviously still resident in the cache. This will create memory system overhead that
can not provide any cache performance benefit. These back pointers will also lead the
prefetcher to recursively issue prefetches in reverse traversal order. This further increases
the memory overhead dedicated to prefetches which will be of no benefit, and may affect
the timeliness of useful prefetches.

42 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

struct Patient {
int hosps visited;
int time;
int time left;
struct Village *home village;

}

(a) Patient data structure

struct List {
struct Patient *patient;
struct List *back;
struct List *forward;

}

(b) List data structure

Fig. 5. Health data structure definitions.

Also a problem is the ordering of the pointers in the List node structure. The back
pointer is placed ahead of the forward pointer. During the prefetcher’s recursive scan
stage, the prefetch request initiated as a result of detecting the back pointer will be
issued before the forward initiated prefetch request. This “backward” prefetch is for
the node just visited during the traversal, which is a wasted prefetch for a node that
is already in the cache. Further, it occupies memory system bandwidth, delaying the
“forward” prefetch. A simple experiment was performed to see if such pointer ordering
would affect the performance of the content-based prefetcher. From Table 3 (page 39),
we see the L1 data cache base miss rate for health is 26.78%. Quite high, which should
provide ample opportunity for the content-based prefetcher to improve the memory
system performance. Using the back - forward pointer ordering shown in Figure 5, the
prefetcher was able to reduce the L1 data cache miss rate to 12.05%. A significant
improvement. Swapping the back - forward pointer ordering resulted in a L1 data cache
miss rate of 11.58%. This would indicate that the content-based prefetcher is sensitive
to the pointer ordering, an area where compiler support could be beneficial.

Perimeter. The program perimeter computes the perimeter of a set of quad-tree encoded
raster images. The encoded raster image is generated at the start of the program. As the
individual nodes of the tree are allocated, each node is assigned one of three colors:
white, black, or grey. In practice only two of these colors are assigned. The leaf nodes of
the tree are designated as being black, and all non-leaf nodes are tagged as being grey.
Once this raster image (quad-tree) is generated it is never modified, and is only traversed
in a predetermined order. The definition of a tree node is given in Figure 6.

Two observations should be made at this point. First, perimeter already exhibits
good cache performance without prefetching. The L1 cache miss rate is just under 4.5%.

Content-Based Prefetching: Initial Results 43

typedef struct quad struct {
Color color;
ChildType childtype;
struct quad struct *nw;
struct quad struct *ne;
struct quad struct *sw;
struct quad struct *se;
struct quad struct *parent;

}

Fig. 6. Perimeter quad-tree node definition.

So like bisort, minimal opportunity is provided for the prefetcher to increase the cache
performance. Second, the quad-tree is generated in traversal order which results in the tree
residing contiguously in memory in traversal order. From a stride prefetcher perspective,
this effectively changes the memory access pattern to that of an array traversal.

The quad-tree’s initial traversal during allocation should give a stride prefetcher the
needed training to start predicting addresses. During the tree traversal when the perimeter
is calculated, the stride prefetcher will be seeing the memory access reference pattern
for the second time, allowing prefetch requests to be generated. Thus a stride prefetcher
should be able to lower the L1 data cache miss rate.

The content prefetcher may not be able to provide such an increase. Perimeter, like
bisort, highlights some of the problems seen when trying to prefetch nodes within a
tree-based data structure. The main problem is the quad-tree structure (see Figure 6).
Each node of the tree contains five pointers: four child node pointers and a parent node
pointer. Each node of the tree requires 48 bytes, which the memory allocator expands
to 64 bytes. The result is the tree node byte count equals the cache line byte count of
the cache simulators used in this paper. The recursive scan feature of the content-based
prefetcher (see Section 2.4, page 36) will issue prefetch requests for all five pointers,
including the parent pointer. The tree is traversed in an in-order fashion: nw, ne, sw,
and se. While the prefetcher is taking a more breadth-first approach to prefetching, the
tree traversal is more characteristic of a depth-first traversal. This results in prefetch
requests being generated long before they would possibly be used. With a fixed-sized
prefetch buffer, these untimely but useful prefetches will most likely get replaced prior
to being beneficial. The high branching factor of the quad-tree (versus a binary tree)
only makes the problem more pronounced. The parent node prefetch requests cause a
separate problem in that they will occupy memory system overhead prefetching data
(nodes) that already resides in the cache. So the combination of a small a priori L1 data
cache miss rate, the quad-tree structure, and the constant in-order traversal of the tree
structure, the content-based prefetcher will most likely only provide a small performance
improvement.

44 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

3.3 Summary

A perusal of the related work section will show that the Olden benchmark suite has
become the standard set of applications to be used when evaluating a prefetch mechanism
that attacks the pointer-chasing problem. These benchmarks do allocate and access a
large number of dynamic data structures, but as discussed in several earlier sections, the
majority of these structures are immutable, and are accessed in an array-like manner.
So while all of them are indeed pointer-intensive applications, not all them exhibit what
would be considered “traditional” pointer-intensive characteristics.

4 Preliminary Results

4.1 Metrics

Traditionally coverage and accuracy have been used to measure the “goodness” of a
prefetch mechanism. While the authors of [27] argue that such metrics may be deceiving
as they do not provide a direct indication of performance, they are sufficient for purposes
of this paper. In this paper we will be using the coverage and accuracy definitions provided
in [27].

Prefetch coverage is a measure of the cache performance gains that the prefetcher
provides, and is defined as the percentage of cache misses eliminated by the prefetcher.
This is shown in Equation(4).

coverage = prefetch hits / misses without prefetching (1)

Prefetch accuracy estimates the quality of the prefetching algorithm, and is defined as
the percentage of prefetch requests that were useful (they matched a future load). This
is shown in Equation(5).

accuray = useful prefetches / number of prefetches generated (2)

A third metric that is used in this paper is miss rates. While miss rates are not the best
metric (they do not reflect the timeliness of the prefetches), for the simple memory
model which is not a cycle accurate model, miss rates can be used as a measure of the
prefetcher’s performance.

4.2 Simple Memory Model

For the initial investigation of content-based prefetching, a simple two-level cache sim-
ulation tool was developed using ATOM [28]. This cache hierarchy contains separate
L1 data and instruction caches, and a unified L2 cache. TLBs are maintained for both
the instruction and data L1 caches, with a shadow TLB assisting with the content-based
prefetch address prediction. The L1 caches are 8KB 2-way set associative with 64 byte
lines; the unified L2 cache is a 1MB 4-way set associative with 64 byte lines. We ex-
plicitly use small caches because the workloads tend to have a small working set size.
The parameters for the various components of the memory model are shown in Table 4.

The timing for the memory model is simple, and does not model any contention
points (e.g. busses). Instructions and memory references complete in one cycle. When

Content-Based Prefetching: Initial Results 45

Table 4. Simple memory model cache simulation parameters.

Caches
Component Capacity Block Size Assoc.

IL1 8KB 64 bytes 2-way set
DL1 8KB 64 bytes 2-way set
UL2 1MB 64 bytes 4-way set

TLBs
Component Entries Page Size Assoc.

ITLB 64 8KB fully
DTLB 64 8KB fully
STLB 1024 8KB direct

prefetching is enabled, a queue is used to store the outstanding prefetch request. Each
cycle the first request in the prefetch request queue is moved to the prefetch buffer,
providing a prefetch request throttling mechanism. When content-based prefetching
is enabled, recursive content scans are performed prior to moving a request from the
prefetch request queue to the prefetch buffer. The memory model also contains a stride
prefetcher, but because of the simplistic timing model, it does not utilize a look-ahead
program counter. Stride generated prefetch requests are also queued and use the same
throttling mechanism, the difference being the stride prefetcher does not perform recur-
sive cache line scans. It should be noted that this simulator does not include a processor
model, but instead uses a straight in-order fetch-execute cycle.

4.3 Synthetic Benchmark

The synthetic benchmark by design should benefit greatly from the content-based pre-
fetcher. While the data structure is defined as a random graph, the individual path traver-
sals through the graph can be viewed as traversals of random linked-lists. With the
simplified memory model allowing prefetches to be available one cycle after being is-
sued, the content-based prefetcher should be able to eliminate all the base case (no
prefetching) L1 data cache misses.

The prefetch coverage and accuracy measurements for the content-based prefetcher
when executing the synthetic benchmark are shown in Table 5. The prefetch coverage
is quite high, almost 97%, showing that the prefetcher is eliminating the majority of the
L1 data cache misses that occur when no prefetching is used. The result of this high
coverage can be seen in Table 6, where the L1 data cache miss rate drops from the base
miss rate of over 66%, to just over 2%.

Table 5. Content-based prefetcher coverage and accuracy measurements when executing the syn-
thetic benchmark.

Load Misses Load Misses Predictions Good Coverage Accuracy
Benchmark w/o PF with PF Made Predictions % %

synthetic 37,238,406 1,152,641 315,104,010 36,085,765 96.90 11.45

46 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

Table 6. L1 data cache miss rates when executing the synthetic benchmark.

Loads Baseline Stride Content
Benchmark Executed Misses Miss % Misses Miss % Misses Miss %

synthetic 56,032,887 37,238,406 66.46 36,928,423 65.90 1,152,641 2.06

Remember that the synthetic benchmark ends each path after traversing 50 nodes,
starting a new path at a random node in the graph. This graph is many times larger than
the L1 data cache, so there is a large probability that the new path’s starting node will
result in an L1 data cache miss. These misses can not be eliminated by the prefetcher,
and rely solely on locality for cache hits. Thus every 50th node reference, or 2% of the
node references, have a high probability of incurring a cache miss. The L1 data cache
miss rate with the content-based prefetcher enabled is 2%. This implies that the content-
based prefetcher is eliminating all the possible cache misses along each path, with the
exception of the first node in each path.

While the content-based prefetcher achieves a high coverage percentage, it’s accuracy
is quite low at 11.45%. This indicates that a large majority of the prefetches initiated
by the content-based prefetcher are not useful. This is somewhat expected for several
reasons. First, the content-based prefetcher also incorporates a next-line prefetcher. For
every address that is predicted, and a prefetch request generated, the same is done for
the next cache line following the predicted address. For the synthetic benchmark where
each node in the graph occupies a complete cache line, and the paths are random, next-
line prefetching provides no benefit. So at least half of the prefetch requests will not be
useful. Second, unlike a stride prefetcher which is able to perform a tag lookup in the
L1 data cache and prefetch buffer prior to initiating a new prefetch, the content-based
prefetcher will be initiating prefetches for cache lines that are already resident in either
the L1 data cache or the prefetch buffer. So while these prefetch requests are correct,
they are not useful, and have needlessly occupied memory bandwidth. This highlights
the need for a feedback mechanism to help in filtering prefetch requests.

4.4 Olden Benchmarks

In Section 3, the workload analysis of the Olden benchmarks concluded that the only
benchmark that could benefit from using the content-based prefetcher would be health.
The results from running the benchmarks using the simple memory model proves this
to be true. A look at Tables 7 and 8 show that the L1 data cache miss rate for health is
significantly reduced, achieving a prefetch coverage of 55%. The remaining three bench-
marks have prefetch coverage ranging from 10% to 23%. The tree-based applications,
bisort and perimeter benefit from temporal locality of the recursive calls near the tree leaf
nodes when traversing the trees. The large branching factor of perimeter keeps it from
achieving the same prefetch coverage of bisort. While most of the linked-list accesses in
em3d are performed in an array-like fashion, em3d does benefit from the content-based
prefetching of future instances of nodes in the “backbone” tree data structure.

While perimeter is defined as a pointer-intensive application, the stride prefetcher
performed considerably better than the content-based prefetcher. This is an obvious indi-
cation of regularity in the memory reference stream. The workload analysis of perimeter

Content-Based Prefetching: Initial Results 47

Table 7. Olden benchmark coverage and accuracy.

Load Misses Load Misses Predictions Good Coverage Accuracy
Benchmark w/o PF with PF Made Predictions % %

bisort 3,198,387 2,460,219 556,145,424 5,259,635 23.08 0.95
em3d 38,762,235 31,668,436 2,104,177,098 24,370,120 18.30 1.16
health 18,836,688 8,476,011 647,730,592 10,391,124 55.00 1.60

perimeter 5,603,401 5,013,004 688,412,386 5,603,401 10.53 0.82

Table 8. Olden benchmark L1 data cache miss rates.

Loads Baseline Stride Content
Benchmark Executed Misses Miss % Misses Miss % Misses Miss %

bisort 93,217,887 3,198,387 3.43 2,761,909 2.96 2,460,219 2.64
em3d 263,623,159 38,762,235 14.70 30,621,473 11.62 31,668,436 12.01
health 70,347,560 18,836,688 26.78 18,170,315 25.83 8,476,011 12.05

perimeter 126,128,928 5,603,401 4.44 1,981,680 1.57 5,013,004 3.97

showed that the tree structure used in perimeter was contiguous in memory in traversal
order and remained unchanged for the duration of the program’s execution, characteris-
tics that a stride prefetcher should be able to exploit. Table 8 shows the stride prefetcher
was indeed able to take advantage of this regularity, attaining a prefetch coverage of over
64%.

Of concern are the extremely low prefetch accuracies. The numbers indicate that
the content-based prefetcher is issuing 100 “bad” prefetch requests for each “good”
request. This is not a problem in the simplified timing model, but in a cycle-accurate
memory model that includes resource contention, the large memory system overhead
introduced by these useless prefetches will have to impact the timeliness of the useful
prefetch requests. These low prefetch accuracies further highlight the need for a filtering
mechanism to remove as many of the useless prefetches as possible.

4.5 Prefetch Distances

Although the timing model used in this initial investigation is simplistic, it is interesting
to examine the prefetch distance (the time from when a prefetch is issued to when
the item is used), shown for both stride and content-based prefetchers in Figure 7 .
Stride prefetchers tend to have a long prefetch distance while the content prefetcher
tends to have a shorter prefetch distance. This implies that very little computational
work is available to mask the content-based prefetches. Intuitively this makes sense as
most programs immediately use a pointer once it has been loaded. The problems that
such small distances introduce is a continuous theme through the relevant prior art. An
observation is that the content-based prefetcher must be allowed to run ahead of the
current program counter if is to improve the memory system performance

48 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

The differences in prediction-usage distances between stride and content-based
prefetching imply that each prefetcher is making different predictions. This would indi-
cate that there is an opportunity to combine both prefetchers for better overall prediction
performance.

bisort - stride

0

20000

40000

60000

80000

100000

120000

140000

1 1000

Distance

R
e
q
u
e
s
t
s

bisort - content

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 1000

Distance

R
e
q
u
e
s
t
s

em3d - stride

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 1000

Distance

R
e
q
u
e
s
t
s

em3d - content

0

500000

1000000

1500000

2000000

2500000

3000000

1 1000

Distance

R
e
q
u
e
s
t
s

health - stride

0

10000

20000

30000

40000

50000

60000

70000

80000

1 1000

Distance

R
e
q
u
e
s
t
s

health - content

0

20000

40000

60000

80000

100000

120000

140000

1 1000

Distance

R
e
q
u
e
s
t
s

perimeter - stride

0

100000

200000

300000

400000

500000

600000

700000

1 1000

Distance

R
e
q
u
e
s
t
s

perimeter - content

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 1000

Distance

R
e
q
u
e
s
t
s

(a) stride (b) content

Fig. 7. Address Prediction-Usage Distances. Each graph displays a cumulative histogram of the dis-
tance, measured in instructions, between when a prefetch request is generated, and the prefetched
datum is used.

Content-Based Prefetching: Initial Results 49

5 Related Work

A large volume of work has been generated in the areas of software [3] and hardware
prefetching, including both data prefetching [7] and instruction prefetching [9]. The fol-
lowing subsections present a survey of software, hardware, and hybrid data prefetching
mechanisms. While the survey is biased towards prefetchers that target pointer inten-
sive applications, it is not limited to only those mechanism that attack the pointer-load
problem.

5.1 Software Based Prefetching

While the following subsections describe several software-based mechanisms for imple-
menting data prefetching, it should be noted that software-controlled prefetching does
require support from the hardware. The instruction set architecture (ISA) for the pro-
cessor must provide a prefetch instruction. The software uses this instruction to issue
a data request to the memory subsystem. The caches must be lock-up free [13], which
allows the cache memory to have multiple outstanding misses. The program can then
continue executing while the memory system retrieves the specified datum, assuming
the application does not need the requested data.

Sequential Predictors. Mowry et al. [18] presented a general method of hiding the
latency of a load by scheduling a matching speculative non-faulting prefetch load in
advance of the demand load. Their algorithm is selective in that it identifies those load
references that are likely to result in a cache miss, and inserts prefetch instructions only
for them. The outstanding prefetch requests were queued in a prefetch issue buffer. This
algorithm is intended for applications that operate on dense matrices.

Recursive Data Structures. Luk and Mowry [15,16] proposed and evaluated three com-
piler algorithms for scheduling prefetches for recursive data structures (RDS): greedy
prefetching, history-pointer prefetching, and data-linearization prefetching. Of these
three algorithms, only the greedy algorithm was implemented in the SUIF optimizing
research compiler. History-pointer prefetching and data-linearization prefetching were
evaluated using hand optimized code.

The greedy algorithm uses type information to detect which objects belong to a re-
cursive data structure, and control structure information to recognize when these objects
are being traversed. Once an RDS object has been found, and a likely control struc-
ture that contains an RDS traversal has been located, the greedy algorithm will insert
prefetches of all pointers within the object that point to other nodes of the RDS. This
insertion will be made at the the earliest point where these addresses are available within
the surrounding control structure.

History-pointer prefetching creates new jump-pointers (history-pointers) within an
RDS. These history-pointers contain observed values of recent traversals of the RDS.
The history-pointers are constructed using a FIFO queue which holds pointers to the
last n nodes that have been visited, where n is set to equal the prefetch distance. The
history-pointer for the oldest node in the queue is set to the current node.

50 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

Data-linearization prefetching attempts to map heap-allocated nodes that are likely
to be accessed close together (such as traversal order in the case of a binary-tree) into
contiguous memory locations. The benefit is that the RDS can now be seen as an array-
like structure, allowing next node pointers to be computed instead of dereferenced. This
method only works well for RDSs that are fairly constant once created, as the process
of dynamically remapping the RDS may result in large runtime overheads.

SPAID. Lipasti et al. [14] proposed the SPAID (Speculatively Prefetching Antici-
pated Interprocedural Dereferences) heuristic, a compiler-based prefetching scheme for
pointer-intensive and call-intensive applications. SPAID is based on the premise that
procedures are likely to dereference any pointer passed to them as arguments. SPAID
therefore inserts prefetches for the objects pointed to by these pointer arguments at the
call sites. This method defines the prefetch distance to be the start of procedure and the
dereference of the passed pointer. Thus the prefetches are only effective if this distance
is comparable to the cache load miss latency.

5.2 Hardware Based Prefetching

Stride Prefetcher. Stride-based prefetchers take advantage of regularities in the data
memory reference stream. In [6], Chen and Baer proposed a hardware prefetcher that
monitors the stride between successive memory references of load instructions. The
reference prediction table (RPT), a cache whose entries are tagged with the instruction
address of load instructions, detects strides by keeping a history of distances between
subsequent load effective addresses. To allow the RPT to issue prefetch requests in a
timely manner, a look-ahead program counter (LAPC) is utilized to engage the prefetcher
in advance of the processor’s regular program counter.

Tango. Pinter and Yoaz [21] introduce Tango, a prefetching mechanism that leverages
the effective utilization of slack time and hardware resources not being used by the main
computation. The Tango prefetcher is comprised of four hardware components. The
program progress graph (PPG) is a directed graph where nodes correspond to a branch
instruction and edges to a block of instructions on the path between the two corresponding
branch instructions. A reference prediction table for superscalar processors (SRPT)
stores the access history information of the memory reference instructions. The pre-PC
and PC are set equal at the start of the program and following any mispredicted branches.
Using the information in the PPG, the pre-PC is capable of advancing to the next block
in one cycle. The prefetch request controller (PRC) controls the scheduling of the data
prefetch requests. A unique feature of the PRC is a queue which contains previous data
cache accesses that hit. By examining this queue, the PRC is able to detect redundant
prefetches without consuming any of the data cache’s tag-port bandwidth.

Stream Prefetcher. Jouppi [11] introduced stream buffers as a method to improve the per-
formance of direct-mapped caches. Stream buffers prefetch sequential streams of cache
lines, doing this independently of the program context. Stream buffers are implemented
as FIFO buffers that prefetch succeeding cache lines, starting with a missed cache line.

Content-Based Prefetching: Initial Results 51

The stream buffers presented in [11] do have a limitation in that they can only detect
streams which contain unit strides.

Palacharla and Kessler [20] addressed this limitation by extended the stream buffer
mechanism to detect non-unit strides, along with introducing a noise rejection scheme to
improve the accuracy of the stream buffers. This filtering mechanism is simple in that it
will wait for two consecutive misses to a sequential cache line address before allocating
a stream buffer.

Farkas et al. [8] enhanced stream buffers by augmenting them with an associative
lookup capability and a mechanism for detecting and eliminating the allocation of stream
buffers to duplicate streams.

Sherwood et al. [26] introduced predictor-directed stream buffers, which improved
the stream buffer’s performance in pointer-base applications, using a stride-filtered
Markov address predictor to guide the stream buffer prefetching.

Correlation-Based Prefetchers. The first instance of correlation-based prefetching be-
ing applied to data prefetching is presented in a patent application by Pomerene and
Puzak [22]. A hardware cache is used to hold the parent-child information. A further
innovation they introduce is to incorporate other information into the parent key. They
suggest the use of bits from the instruction causing the miss, and also bits from the
last data address referenced. They also introduce a confirmation mechanism that only
activates new pairs when data that would have been prefetched would also have been
used. This mechanism is very much like the allocation filters introduced by Palacharla
et.al. [20] to improve the accuracy of stream buffers and serves a similar purpose here.

Charney and Reeves [5] extended the Pomerene and Puzak mechanism and applied
it to the L1 miss reference stream rather than directly to the load/store stream. They
improved upon the previous mechanism by introducing a FIFO history buffer which
allowed a greater lead time for the prefetches. Instead of entering parent-child pairs into
the pair cache, ancestors older than the parent can be paired with the child and entered
in the pair cache. Another important contribution by Charney and Reeves was to show
that stride based prefetching could be combined with correlation based prefetching to
provide significant improvements in prefetch coverage over using either approach alone,
on certain benchmarks.

Alexander and Kedem [1] proposed a mechanism similar to correlation-based prefetch-
ing but used a distributed prediction table. In their variation, a correlation-based table
was used to predict bit-line accesses in an Enhanced DRAM, and was used to prefetch
individual bit lines from the DRAM to the SRAM array.

Joseph and Grunwald [10] use a Markov model to predict future memory references.
The model is implemented in hardware as a prediction table, and allows multiple, prior-
itized prefetch requests to be launched. The prefetcher is designed to act as an interface
between the on-chip and off-chip cache, and can be added to most existing computer
designs.

Recurrence Recognition. Mehrotra and Harrison [17] contribute a memory access clas-
sification scheme that represents address sequences as recurrent patterns. They then
exploit this scheme to extend the RPT described in [6] to allow it to capture memory
reference patterns associated with recursive data structures.

52 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

Dependence-Based. Roth et al. [24] proposed a dependence-based prefetching mecha-
nism that dynamically captures the traversal behavior of linked data structures (LDS).
The dependence-based prefetcher works by matching producer-consumer instruction
pairs. A producer being a load whose value is an address, and a consumer being a
load that uses that value (address) as its base address. The prefetch mechanism uses
three hardware components. The potential producer window (PPW) is a list of the most
recent loaded values and the corresponding load instruction. Producer-consumer pairs
are recorded in the correlations table (CT). The collection of producer-consumer pairs
residing in the CT define the traversal kernel for the LDS. Prefetch requests are en-
queued onto a prefetch request queue (PRQ). The PRQ buffers prefetch requests until
data ports are available to service them. One drawback to this approach is that is does
limit prefetching to a single instance ahead of a given load.

Jump-Pointers. In [25], Roth and Sohi investigate the use of jump-pointers [15] to
prefetch LDSs that contain backbone and backbone-and-ribs structures. A backbone
LDS contains only one type of node, and is connected in a recursive manner (e.g. list,
tree, graph). A backbone-and-ribs LDS contains secondary structures at each of the
primary structure nodes (e.g. a linked-list at each node of a tree).

Roth and Sohi combined two prefetching techniques, jump-pointer prefetching and
chained prefetching (using only the original pointers found in the structure), to form four
prefetching idioms: queue, full, chain, and root jumping. Queue jumping is applied to
backbone structures, and adds jump-pointers to each node of the structure. Full jumping
adds only jump-pointers to backbone-and-ribs structures. Chain jumping adds jump-
pointer prefetches to the backbone, and chained prefetches to the ribs. Root jumping
uses only chained prefetches.

5.3 Hybrid Prefetching

Push Model. Yang and Lebeck [29] describe a push model of generating prefetch re-
quests for linked data structures (LDS). In most prefetch mechanisms, the prefetch
request originates at the upper, or CPU level of the memory hierarchy. The request then
propagates down the memory chain until it can be satisfied, and then traverses back up to
the level where the prefetch request was initiated. In the push model, prefetch engines are
attached to each level of the memory hierarchy and “push” prefetched data towards the
upper levels. This eliminates the request from the upper levels to the lower level, which
can dramatically reduce the memory latency of the prefetch request. This should allow
for the overlapping of data transfers from node-to-node within a linked data structure.

The prefetch engines are very similar to the prefetch mechanism described in [24].
They are designed to execute traversal kernels which are down-loaded to the prefetch
engine via a memory-mapped interface. The root address of the LDSs are conveyed
to the prefetch engines using a special “flavored” load instruction. Upon seeing such a
load, the prefetch engines begin executing the previously downloaded traversal kernel
independent of the program execution.

Memory-Controller Based. Zhang et al. [30] present a memory-controller based prefetch-
ing mechanism, where data prefetching of linked data structures originate at the memory

Content-Based Prefetching: Initial Results 53

controller. The mechanism they propose is implemented using the Impulse Adaptable
Memory Controller system. The memory controller is under the control of the operating
system, which provides an interface for the application to specify optimizations for par-
ticular data structures. The programmer, or compiler, inserts directives into the program
code to configure the memory controller.

Prefetch Arrays. Karlsson et al. [12] extend the jump-pointer prefetching discussed
in [15,25] by including arrays of jump-pointers, a prefetch array, at the start of recursive
structure nodes. The premise is to aggressively prefetch all possible nodes of a LDS
several iterations prior to their use. To ameliorate the overhead of issuing blocks of
prefetches, the ISA is extended to include a block prefetch operation.

6 Conclusions and Future Work

The current improvements with content-based prefetching are promising. We are ex-
perimenting with a number of prioritization and control mechanisms to increase the
prefetch accuracy. Content-based prefetching is intended to be used in conjunction with
other prefetching mechanisms, such as stride or stream prefetching. This paper explored
each prefetcher in isolation, but the difference in the prefetch distance clearly shows that
each has unique advantages.

Once we better understand how content-based prefetchers behave, we intend to
examine this prefetching mechanism in more depth using a cycle-accurate timing model.

References

1. T. Alexander and G. Kedem. Distributed predictive cache design for high performance mem-
ory system. In Proceedings of the Second International Symposium on High-Performance
Computer Architecture, San Jose, California, February 1996. IEEE Computer Society TCCA.

2. H-J. Boehm. Hardware and operating system support for conservative garbage collection. In
IWMM, pages 61–67, Palo Alto, California, Oct 1991. IEEE Press.

3. D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In Proceedings of the
4th International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 40–52, Santa Clara, CA, April 1991. ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Society.

4. M.C. Carlisle and A. Rogers. Software caching and computation migration in olden. In
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 29–38. ACM, July 1995.

5. M.J. Charney and A.P. Reeves. Generalized correlation based hardware prefetching. Technical
Report EE-CEG-95-1, Cornell University, February 1995.

6. T-F. Chen and J-L. Baer. Reducing memory latency via non-blocking and prefetching caches.
In Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 51–61, Boston, MA, October 1992. ACM.

7. T-F. Chen and J-L. Baer. A performance study of software and hardware data prefetching
schemes. In Proceedings of the 21st Annual International Symposium on Computer Archi-
tecture, pages 223–232, Chicago, IL, April 1994. ACM.

54 Robert Cooksey, Dennis Colarelli, and Dirk Grunwald

8. K.I. Farkas and N.P. Jouppi. Complexity/performance tradeoffs with non-blocking loads. In
Proceedings of the 21st Annual International Symposium on Computer Architecture, pages
211–222, Chicago, IL, April 1994. ACM.

9. W-C. Hsu and J.E. Smith. A performance study of instruction cache prefetching methods.
IEEE Transactions on Computers, 47(5):497–508, May 1998.

10. D. Joseph and D. Grunwald. Prefetching using Markov predictors. In Proceedings of the
24th Annual International Symposium on Computer Architecture, pages 252–263, Denver,
CO, June 1997. ACM.

11. N.P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 388–397. ACM, 1990.

12. M. Karlsson, F. Dahlgren, and P. Stenström. A prefetching technique for irregular accesses
to linked data structures. In Proceedings of the Sixth International Symposium on High-
Performance Computer Architecture, pages 206–217, Toulouse, France, January 2000. IEEE
Computer Society TCCA.

13. D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the
8th Annual International Symposium on Computer Architecture, pages 81–87. ACM, 1981.

14. M.H. Lipasti, W.J. Schmidt, S.R. Kunkel, and R. R. Roediger. Spaid: Software prefetching
in pointer and call intensive enviornments. In Proceedings of the 28th Annual International
Symposium on Microarchitecture, pages 231–236, Ann Arbor, MI, November 1995. ACM.

15. C-K. Luk and T.C. Mowry. Compiler-based prefetching for recursive data structures. In
Proceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 222–233, Cambridge, MA, October 1996. ACM.

16. C-K. Luk and T.C. Mowry. Automatic compiler-inserted prefetching for pointer-based appli-
cations. IEEE Transactions on Computers, 48(2):134–141, February 1999.

17. S. Mehrotra and L. Harrison. Examination of a memory access classification scheme for
pointer-intensive and numeric programs. In Proceedings of the 1996 International Conference
on Supercomputing, pages 133–140, Philadelphia, PA USA, May 1996. ACM.

18. T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 62–73, Boston, MA, October 1992.
ACM.

19. T. Ozawa, Y. Kimura, and S. Nishizaki. Cache miss heuristics an preloading techniques for
general-purpose programs. In Proceedings of the 28th Annual International Symposium on
Microarchitecture, pages 243–248, Ann Arbor, MI, November 1995. ACM.

20. S. Palacharla and R.E. Kessler. Evaluating stream buffers as a secondary cache replacement.
In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages
24–33, Chicago, IL, April 1994. ACM.

21. S.S. Pinter and A. Yoaz. Tango: a hardware-based data prefetching technique for superscalar
processors. In Proceedings of the 29th Annual International Symposium on Microarchitecture,
pages 214–225, Paris, France, December 1996. ACM.

22. J. Pomerene and et.al. Prefetching system for a cache having a second directory for sequen-
tially accessed blocks. Technical Report 4807110, U.S. Patent Office, Feb 1989.

23. A. Roger, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data structures on
distributed memory machines. ACM Transactions on Programming Languages and Systems,
17(2), March 1995.

24. A. Roth, A. Moshovos, and G.S. Sohi. Dependance based prefetching for linked data struc-
tures. In Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 115–126, San Jose, CA, October 1998.
ACM.

Content-Based Prefetching: Initial Results 55

25. A. Roth and G.S. Sohi. Effective jump-pointer prefetching for linked data structures. In
Proceedings of the 26th Annual International Symposium on Computer Architecture, pages
111–121, Atlanta, GA, May 1999. ACM.

26. T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers. In Proceedings of the
33th Annual International Symposium on Microarchitecture, Monterey, CA USA, December
2000. ACM.

27. V. Srinivasan, E. Davidson, and G. Tyson. A prefetch taxonomy. Technical Report CSE-TR-
424-00, University of Michigan, April 2000.

28. A. Srivastava and A. Eustace. Atom a system for building customized program analysis tools.
In PLDI’94, pages 196–205, Orlando, FL, June 1994.

29. C-L. Yang and A.R. Lebeck. Push vs. pull: Data movement for linked data structures. In
Proceedings of the 2000 International Conference on Supercomputing, pages 176–186, Santa
Fe, NM USA, May 2000. ACM.

30. L. Zhang, S.A. McKee, W.C. Hsieh, and J.B. Carter. Pointer-based prefecthing within the
Impulse adaptable memory controller: Initial results. In Solving the Memeory Wall Problem
Workshop (ISCA 27), June 2000.

Memory System Support for

Dynamic Cache Line Assembly

Lixin Zhang, Venkata K. Pingali, Bharat Chandramouli, and John B. Carter

School of Computing
University of Utah

Salt Lake City, UT 84112
{lizhang, kmohan, bharat, retrac}@cs.utah.edu

http://www.cs.utah.edu/impulse/

Abstract. The effectiveness of cache-based memory hierarchies depends
on the presence of spatial and temporal locality in applications. Memory
accesses of many important applications have predictable behavior but
poor locality. As a result, the performance of these applications suffers
from the increasing gap between processor and memory performance.
In this paper, we describe a novel mechanism provided by the Impulse
memory controller called Dynamic Cache Line Assembly that can be
used by applications to improve memory performance. This mechanism
allows applications to gather on-the-fly data spread through memory into
contiguous cache lines, which creates spatial data locality where none
exists naturally. We have used dynamic cache line assembly to optimize
a random access loop and an implementation of Fast Fourier Transform
(FFTW). Detailed simulation results show that the use of dynamic cache
line assembly improves the performance of these benchmarks by up to a
factor of 3.2 and 1.4, respectively.

1 Introduction

The performance gap between processors and memory is widening at a rapid rate.
Processor clock rates have been increasing 60% per year, while DRAM latencies
have been decreasing only 7% per year. Computer architects have developed a
variety of mechanisms to bridge this performance gap including out-of-order ex-
ecution, non-blocking multi-level caches, speculative loads, prefetching, cache-
conscious data/computation transformation, moving computation to DRAM
chips, and memory request reordering. Many of these mechanisms achieve re-
markable success for some applications, but none are particularly effective for
irregular applications with poor spatial or temporal locality. For example, no

This effort was sponsored in part by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) under agreement number
F30602-98-1-0101 and DARPA Order Numbers F393/00-01 and F376/00. The views
and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official polices or endorsements, either express
or implied, of DARPA, AFRL, or the US Government.

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 56–70, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Memory System Support for Dynamic Cache Line Assembly 57

systems based on conventional microprocessors can handle the following loop
efficiently if the array A is sufficiently large:

float A[SIZE];
for (i = 0; i < itcount; i++) {

sum += A[random()%SIZE];
}

We are developing a memory system called Impulse that lets applications
control how, when, and what data is placed in the processor cache [2]. We do
this by adding an optional extra level of physical-to-physical address translation
at the main memory controller (MMC). This extra level of translation enables
optimizations such as “gathering” sparse data into dense cache lines, no-copy
page coloring, and no-copy superpage creation. In this paper, we describe a
new mechanism called dynamic cache line assembly that we are considering for
Impulse. This mechanism allows applications to request that a cache line be
loaded on-the-fly with data from disjoint parts of memory. Applications that
can determine the addresses that they will access in the near future can request
that data from those addresses be fetched from memory. This mechanism lets
applications create spatial locality where none exists naturally and works in
situations where prefetching would fail due to bandwidth constraints. Simulation
indicates that dynamic cache line assembly improves the performance of the
random access loop above by a factor of 3.2 and the performance of the dominant
phase of FFTW by a factor of 2.6 to 3.4.

The rest of the paper is organized as follows. Section 3 briefly describes the
basic technology of Impulse. Section 4 presents the design details of dynamic
cache line assembly. Section 5 studies the performance evaluation of the pro-
posed mechanism. And finally, Section 6 discusses future work and concludes
this paper.

2 Related Work

Much work has been done to increase the spatial and temporal locality of regular
applications using static analysis. Compiler techniques such as loop transforma-
tions [1] and data transformations [3] have been useful in improving memory
locality of applications. However, these methods are not well suited to tackle the
locality problem in irregular applications where the locality characteristics are
not known at compile time.

A hybrid hardware/software approach to improving locality proposed by Ya-
mada et al. [12] involves memory hierarchy and instruction set changes to sup-
port combined data relocation and prefetching into the L1 cache. Their solution
uses a separate relocation buffer to translate array elements’ virtual addresses
into the virtual relocation buffer space. The compiler inserts code to initiate
the remapping, and it replaces the original array references with corresponding
relocation buffer references. However, this approach can only relocate strided
array references. Also, it saves no bus bandwidth because it performs relocation

58 Lixin Zhang et al.

at the processor. Contention for cache and TLB ports could be greatly increased
because the collecting procedure of each relocated cache line must access the
cache and CPU/MMU multiple times. This approach is also not designed for
irregular applications.

There has been some work in developing dynamic techniques for improving
locality. Ding and Kennedy [5] introduce the notion of dynamic data packing,
which is a run time optimization that groups data accessed at close intervals in
the program into the same cache line. This optimization is efficient only if the
gathered data is accessed many times to amortize the overhead of packing and if
the access order does not change frequently during execution. DCA setup incurs
much lesser overhead because it does not involve data copying, and it allows
frequent changes to the indirection vector.

To the best of our knowledge, hardware support for general-purpose cache
line gathering such as is supported by DCA is not present in any architecture
other than Cray vector machines. For example, the Cray T3E [10] provides spe-
cial support for single-word load. Sparse data can be gathered into contiguous
E-registers and the resulting blocks of E-registers can then be loaded “broad-
side” into the processor in cache line sized blocks, thus substantially reducing
unnecessary bus bandwidth that would have been used in normal cache line fills.
Dynamic cache line assembly provides similar scatter gather capability for con-
ventional microprocessors without the need for special vector registers, vector
memory operations in the instruction set, or an SRAM main memory.

3 Impulse Architecture

The Impulse adaptable memory system expands the traditional virtual memory
hierarchy by adding address translation hardware to the main memory controller
(MMC) [2, 11, 14]. Impulse uses physical addresses unused in conventional sys-
tems as remapped aliases of real physical addresses. For instance, in a system
with 32-bit physical addresses and one gigabyte of installed DRAM, the physi-
cal addresses inside [0x40000000 – 0xFFFFFFFF] normally would be considered
invalid. 1 Those, otherwise unused, physical addresses refer to a shadow address
space.

Figure 1 shows how addresses are mapped in an Impulse system. The real
physical address space is directly backed up by physical memory; its size is
exactly the size of installed physical memory. The shadow address space does
not directly point to any real physical memory (thus the term shadow) and must
be remapped to real physical addresses through the Impulse MMC. How the
MMC interprets shadow addresses presented to it is configured by the operating
system.

This virtualization of unused physical addresses can provide different views
of data stored in physical memory to programs. For example, it can create cache-
1 It is common to have I/O devices mapped to special “high” addresses. This problem

can be easily avoided by not letting shadow address space overlap with I/O devices
addresses.

Memory System Support for Dynamic Cache Line Assembly 59

M
M

U
/T

L
B

M
M

C

Virtual Space Physical Space Physical Memory

Real physical addresses

Shadow addresses

Fig. 1. Address mapping in an Impulse system.

friendly data structures to improve the efficiency of the processor caches. The
operating system manages all of the resources in the expanded memory hierarchy
and provides an interface for the application to specify optimizations for par-
ticular data structures. The programmer (or the compiler) inserts appropriate
system calls into the application code to configure the memory controller.

To map a data item in the shadow address space to the physical memory, the
Impulse MMC must first recover its virtual address. To avoid directly handling
virtual addresses at the MMC, we require that the virtual address must be
located inside a special virtual region. The OS creates a dense, flat page table
in contiguous physical addresses for the special virtual region. We call the page
table the memory controller page table. The OS then pins down this page table
in main memory and sends its starting physical address to the memory controller
so that the MMC can access this page table without interrupting the OS. Since
data items in a shadow region are mapped to a special virtual region, the MMC
only need compute offsets relative to the starting address of the virtual region.
We call such an offset a pseudo-virtual address. For each shadow data item, the
MMC first computes its pseudo-virtual address, then uses the memory controller
page table to determine the data item’s real physical address. To speed up the
translation from pseudo-virtual to physical addresses, the MMC uses an TLB to
store recently used translations. We call this TLB the MTLB.

Figure 2 shows a simplified block diagram of the Impulse memory system. The
critical component of the Impulse MMC is the shadow engine, which processes
all shadow accesses. The shadow engine contains a small scatter/gather SRAM
buffer used as a place to scatter/gather cache lines in the shadow address space,
some control registers to store remapping configuration information, an ALU
unit (AddrCalc) to translate shadow addresses to pseudo-virtual addresses, and a
Memory Controller Translation Lookaside Buffer (MTLB) to cache recently used
translations from pseudo-virtual addresses to physical addresses. The control
registers are split into eight different sets and are capable of saving configuration
information for eight different mappings. However, all mappings share the same
ALU unit and the same MTLB.

60 Lixin Zhang et al.

DRAM

L1CPU

MMU

L2

DRAM

sy
st

em
 m

em
or

y
 b

us

 MMC
Shadow Address

DRAM Interface

N
orm

al A
ddress

Shadow engine

B
uf

fe
r

Registers

AddrCalc

MTLB

?

Fig. 2. Impulse architecture.

4 Design

The proposed dynamic cache line assembly mechanism is an extension of Im-
pulse’s scatter/gather through an indirection vector remapping mechanism. Its
main goal is to enable applications to access data spread through memory as
if it were stored sequentially. In this section, we first talk about scatter/gather
through an indirection vector, then describe the design of dynamic cache line
assembly.

4.1 Scatter/Gather through An Indirection Vector

The Impulse system supports a remapping called scatter/gather through an in-
direction vector. For simplicity, we refer to it as IV remapping throughout the
rest of this paper. IV remapping maps a region of shadow addresses to a data
structure such that a shadow address at offset soffset in the shadow region is
mapped to data item addressed by vector[soffset] in the physical memory.

Figure 3 shows an example of using IV remapping on a sparse matrix-vector
product algorithm. In this example, Pi is an alias array in the shadow ad-
dress space. An element Pi[j] of this array is mapped to element P[ColIdx[j]]
in the physical memory by the Impulse memory controller. For a shadow cache
line containing elements Pi[j], Pi[j+1], . . . , Pi[j+k], the MMC fetches elements
P[ColIdx[j]], P[ColIdx[j+1]], . . . , P[ColIdx[j+k]] one by one from the physical
memory and packs them into a dense cache line.

Figure 4 illustrates the gathering procedure. The shadow engine contains
a one cache line SRAM buffer to store indirection vectors. We call this SRAM
buffer the IV buffer. When the MMC receives a request for a cache line of Pi[], it
loads the corresponding cache line of ColIdx[] into the IV buffer, if the IV buffer

Memory System Support for Dynamic Cache Line Assembly 61

Pi[j]sum += Data[j] *

}
b[i] = sum;

;

After remappingOriginal code

for (j = Rows[i]; j < Rows[i+1]; j++)

sum += Data[j] * P[ColIdx[j]];

for (j = Rows[i]; j < Rows[i+1]; j++)

sum = 0;

for (i = 0; i < n; i++) {

b[i] = sum;

sum = 0;

for (i = 0; i < n; i++) {

Pi = AMS_remap(P, ColIdx, n, ...);

}

Fig. 3. Scatter/gather through an indirection vector changes indirect accesses to se-
quential accesses.

AddrCalc

MTLB

IV bufferShadow
 engine

Scatter/gather buf

System Bus

Physical Memory

Cache

Fig. 4. Visualize the gathering procedure through an indirection vector.

does not already contain it. The MMC then can interpret one element of the
indirection vector per cycle. The indirection vector may store virtual addresses,
array indices, or even real physical addresses. What it stores (addresses or in-
dices) is specified when the remapping is configured; without loss of generality,
we will refer to the contents of the IV buffer generically as “addresses” through-
out the rest of this paper. If the IV buffer stores virtual address or array indices,
the MMC passes each entry to the AddrCalc unit to generate a pseudo-virtual
address and translates the pseudo-virtual address to a physical address using the
MTLB. Once the MMC has a physical address for a data element, it uses this
address to access physical memory. When a data item returns, it is packed into
a dense cache line in the scatter/gather buffer.

By mapping sparse, indirectly addressed data items into packed cache lines,
scatter/gather through an indirection vector enables applications to replace indi-
rect accesses with sequential accesses. As a result, applications reduce their bus
bandwidth consumption, the cache footprint of their data, and the number of
memory loads they must issue.

A naive implementation of IV remapping requires that the indirection vector
exists in the program and its number of elements be the same as the number of
data items being gathered, e.g., Rows[n] in Figure 3. We extend IV remapping to
implement dynamic cache line assembly, which can be used by programs where
no indirection vector exists naturally and where the size of an indirection vector
need not be equal to the number of data items being gathered.

62 Lixin Zhang et al.

4.2 Dynamic Cache Line Assembly

The basic idea of dynamic cache line assembly is to create indirection vec-
tors dynamically during program execution and to access them using Impulse’s
IV remapping mechanism. The indirection vectors typically are small, usually
smaller than a page. We choose small indirection vectors because accessing them
and the resulting small alias arrays leaves a very small footprint in the cache.
The small indirection vectors and alias arrays can be reused to remap large data
structures.

To use DCA, the application performs a system call to allocate two special
ranges of shadow addresses and have the operating system map new virtual
addresses to these two ranges. The first range is used to store the addresses
from which the application wishes to load data (we call this the address region),
while the second range is used to store the requested data (we call this the data
region). The number of addresses that can be stored in the address region is the
same as the number of data items that can be stored in the data region. There
is a one-to-one mapping between elements of the two ranges: the ith element
of the address region is the address of the ith element of the data region. The
operating system also allocates a contiguous real physical memory to back up
the address region in case an indirection vector is forced out of the IV buffer
before the MMC has finished using it.

After setting up the regions, the operating system informs the MMC of their
location, as well as the size of each address and the size of the object that needs
to be loaded from each address. For simplicity, we currently require that both
the address and data regions are a multiple of a cache line size, and that the
data objects are a power of two bytes.

After setup, the application can exploit dynamic cache line assembly by fill-
ing a cache line in the address region with a set of addresses and writing it back
to memory through a cache flush operation. When the MMC sees and recognizes
this write-back, it stores the write-back cache line into both the IV buffer and
the memory. Storing the write-back into the memory is necessary because the IV
buffer may be used by another writeback. When the MMC receives a load request
for a cache line in the data region, it checks to see if the IV buffer contains the
corresponding cache line in the address region. If the required cache line is not
in the IV buffer, the shadow engine loads it from memory. The MMC then inter-
prets the contents of the IV buffer as a set of addresses, passes these addresses
through the AddrCalc unit and the MTLB to generate the corresponding physi-
cal addresses, fetches data from these physical addresses, and stores the fetched
data densely into the scatter/gather buffer inside the shadow engine. After an
entire cache line has been packed, the MMC supplies it to the system bus from
the scatter/gather buffer.

Figure 5 shows how dynamic cache line assembly can be used to improve the
performance of the random access loop presented in Section 1. In this example,
we assume that L2 cache lines are 128 bytes, so each cache line can hold 32

Memory System Support for Dynamic Cache Line Assembly 63

float *aliasarray;

int *idxvector;

/* aliasarray[i] <== A[idxvector[i]] */

setup_call(A, SIZE, 32, &aliasarray, &idxvector);

for (i = 0; i < itcount/32; i++) {

for (k = 0; k < 32; k++)

idxvector[k] = & (A[random()%SIZE]);

flush_cache line(idxvector);

memory_barrier();

for (k = 0; k < 32; k++)

sum += aliasarray[k];

purge_cache line(aliasarray);

}

Fig. 5. Using dynamic cache line assembly on the random access loop

addresses or 32 floats2. The program first allocates a 32-element address region
idxvector and a 32-element data region aliasarray through the system call
setup call(). In each iteration, the application fills a cache line’s worth of the
address region with addresses, flushes it, and then reads from the corresponding
shadow data region to access the data. Traditional microprocessors with out-
of-order execution usually give reads higher priority than writes, so the read
request for the data may be issued before the flush occurs. To ensure this does
not happen, we insert a memory barrier after the flush. Since the same data
region is used in every iteration, the old data in the cache must be invalidated
so that the next fetch will go to the MMC to retrieve the right data.

The main overhead of using dynamic cache line assembly is that the program
must handle the address regions (i.e., indirection vectors) and the MMC must
gather a cache line using multiple DRAM fetches. In this example, filling a cache
line of the indirection vector introduces 32 sequential memory accesses that do
not exist in the original code. Fortunately, those 32 accesses generate only one
cache miss. Accessing a cache line of the data region results in another cache miss.
As a result, the Impulse version has 2 cache misses for every 32 data accesses.
In the original code, however, the same 32 data accesses generate roughly (32
* (1 - sizeof(cache) / sizeof(A)) cache misses when the array A is larger
than the cache. Dynamically gathering a cache line in the MMC is much more
expensive than fetching a single dense region of memory. Consequently, the code
in Figure 5 will be memory-bound because there is a long waiting time in each

2 It is not required that the objects being fetched are the same size as an address. If,
for example, you want to dynamically fetch quad-precision floating point numbers
(16 bytes), each time the application flushes a line of addresses, the MMC will fetch
four cache lines full of data.

64 Lixin Zhang et al.

iteration for the MMC packing and returning data. However, its performance
can be improved using unroll-and-jam.

#define PrecomputeAddresses(start, end) \

for (k = start; k < end; k++) \

idxvector[k] = &(A[random()%SIZE]); \

flush_cache line(&(idxvector[start])); \

memory_barrier(); \

prefetch_cache line(&(aliasarray[start]));

#define AccessData(start, end) \

for (l = start; l < end; l++) \

sum += aliasarray[l]; \

purge_cache line(&(aliasarray[start]));

float *aliasarray;

int *idxvector;

/* aliasarray[i] <== A[idxvector[i]] */

setup_call(A, SIZE, 64, &aliasarray, &idxvector);

PrecomputeAddresses(0, 32);

for (i = 0; i < itcount/64 - 1; i++) {

PrecomputeAddresses(32, 64);

AccessData(0, 32);

PrecomputeAddresses(0, 32);

AccessData(32, 64);

}

......

Fig. 6. Using unroll-and-jam with dynamic cache line assembly.

Figure 6 illustrates how unroll-and-jam can be used to improve performance.
By using two cache lines for each of the address and data regions, we can overlap
computation on one line’s worth of data while prefetching the next line, thereby
hiding the long memory latency of dynamic cache line gathering. To support this
optimization, we need to increase the size of the IV buffer to two cache lines.
With software unroll-and-jam, the processor may flush back one cache line of
the address region while the MMC is gathering data from another set of address.
With two cache lines in the IV buffer, the second write-back can be saved in the
buffer instead of being written back to DRAM and then reloaded when needed.

Memory System Support for Dynamic Cache Line Assembly 65

5 Performance Evaluation

We evaluated the performance of dynamic cache line assembly using execution-
driven simulation. We compared the performance of two benchmarks using dy-
namic cache line assembly with the same benchmarks unmodified. The first
benchmark is the synthetic “random walk” microbenchmark described in Sec-
tion 1. The second benchmark is a three-dimensional FFT [6] program from DIS
benchmark suite [7]. Both benchmarks were compiled using the SPARC SC4.2
compiler with the -xO4 option to produce optimized code.

5.1 Simulation Environment

Our studies use the execution-driven simulator URSIM [13] derived from RSIM [9]
URSIM models a microprocessor close to MIPS R1000 [8] and a split-transaction
MIPS R10000 cluster bus with a snoopy coherence protocol. It also simulates the
Impulse adaptable memory system in great detail. The processor is a four-way,
out-of-order superscalar with a 64-entry instruction window. The D/I unified
TLB is single-cycle, fully associative, software-managed, and has 128 entries.
The instruction cache is assumed to be perfect. The 64-kilobyte L1 data cache
is non-blocking, write-back, virtually indexed, physically tagged, direct-mapped,
and has 32-byte lines and one-cycle latency. The 512-kilobyte L2 data cache is
non-blocking, write-back, physically indexed, physically tagged, two-way asso-
ciative, and has 128-byte lines and eight-cycle latency. The split-transaction bus
multiplexes addresses and data, is eight bytes wide, has a three-cycle arbitration
delay and a one-cycle turn-around time. The system bus, memory controller,
and DRAMs have the same clock rate, which is one third of the CPU clock. The
memory supports critical word first. It returns the critical quad-word for a load
request 16 bus cycles after the corresponding L2 cache miss occurs. The memory
system contains 8 banks, pairs of which share an eight-byte wide bus between
DRAM and the MMC.

The address translation procedure in the shadow engine is fully pipelined. For
each shadow access entering the pipeline, the engine generates the first physical
address four cycles later and one physical address per cycle afterwards, provided
that no MTLB miss occurs. On an MTLB miss, the pipeline is stalled until
the required page table entry has been loaded into the MTLB. The MTLB is
configured to be four-way associative, with 256 entries and a one-memory-cycle
lookup latency.

5.2 Results

The performance results presented here are obtained through complete simula-
tion of the benchmarks, including both kernel and application time, the overhead
of setting up and using dynamic cache line assembly, and the resulting effects
on the memory system.

66 Lixin Zhang et al.

Elapsed TLB hit L1 hit L2 hit Miss Memory Speedup
cycles rate rate rate rate latency

Base 196M 73.67% 65.68% 7.76% 26.56% 51 cycles
Impulse 61M 99.97% 93.37% 6.21% 0.42% 113 cycles 3.22

Table 1. Performance results for the microbenchmark.

Microbenchmark In the synthetic microbenchmark, A[] holds one million
elements and two million random accesses are performed. In theory, its cache hit
rate should be the size of the cache divided by the size of A[]. So larger A[] has
smaller cache hit rate and likely yields better performance improvement with
dynamic cache line assembly. We choose A[] to contain one million elements
simply because it is large enough to prove the effectiveness of dynamic cache
line assembly and its simulation can complete in a reasonable amount of time.

Table 1 presents the results of this experiment. The unrolled version of the
microbenchmark shown in Figure 6, which uses DCA, executes 3.2 times faster
than the baseline version. The Impulse version increases the L1 cache hit rate
from 65.68% to 93.37% and reduces the number of accesses that are handled
by the main memory from 26.56% to 0.42%. One nice side effect of dynamic
cache line assembly is the improved TLB performance. The base version of this
benchmark has very bad TLB behavior because the TLB is not big enough to
hold the translations for the entire array A[]. After using dynamic cache line
assembly, the TLB needs at most two entries to hold the translations for the
address and data regions. Table 1 shows that the TLB hit rate has indeed been
greatly improved (from 73.67% to 99.97%).

Average memory latency increases from 51 cycles to 113 cycles, because dy-
namic cache line assembly requires more work than a simple dense cache line fill,
but the improved cache performance overwhelms the effect of the increased mem-
ory latency. The memory latency reported here is the average latency for all load
accesses, excluding prefetch accesses. The average memory latency of prefetch
accesses reaches around 600 cycles due to high MTLB miss rate (82.97%). The
MTLB is configured to be four-way set associative with 256 entries. The sim-
ulated system uses four-kilobyte base page, so the MTLB’s maximum reach is
only one megabyte, much less than the A[], which is four megabytes. In the
real hardware we are building, the MTLB has 1024 entries. We reduced the
MTLB size to 256 entries in our simulations to generate high MTLB miss rates,
while leaving the MTLB larger than the CPU TLB (an important feature of
Impulse [11]). The good performance of dynamic cache line assembly even with
such high MTLB miss rates gives us confidence that our results will hold, and
perhaps even improve, on larger data structures. Despite the high latency of
dynamic cache line assembly, the use of prefetching results in an average latency
of demand requests of 113 cycles. In this microbenchmark, not enough work is
done on each piece of data for prefetching to completely hide the load latency,

Memory System Support for Dynamic Cache Line Assembly 67

so we still see a high average memory latency. If more work were performed per
data item, the memory latency perceived by the processor would drop.

FFT Fast Fourier Transform(FFT) is generally characterized by poor temporal
and spatial locality. FFTW [6] is a specific implementation of FFT whose self-
optimizing approach lets it outperform most other FFT implementations. We
chose this FFT implementation as our baseline and modified it to use dynamic
cache line assembly.

���������
�����
�����

�����
�����
�����

Y

X

Z

DEPTH
1 L2 CACHE LINE

MEMORY
ACCESSES

Fig. 7. Shows memory access pattern of depth phase and a cache-column

In general, 3D FFTW operates in two phases. The 3D input array is accessed
along x and y axes in the first phase of the computation. In the second phase,
which we call the Depth Phase, data is accessed along the z axis. For large arrays,
row-major array layout causes poor locality when the array is accessed along the
y and z dimensions. The memory performance accesses along the y dimension is
usually acceptable because (1) the preceding the x dimension access load much of
the necessary data into the cache and (2) the amount of data accessed per plane
is usually smaller than the cache. As a result, most y accesses hits in the cache.
However, most z accesses during the depth phase suffer cache misses, which
accounts for 40-70% of total execution time. Accesses along the y-dimension and
z-dimension load into the cache columns of data whose length is the length of
the array dimension being traversed (y or z) and whose width is one cache line.
We call each such block of data a cache column, one of which is highlighted in
Figure 7. Each cache column, once loaded, is reused for as many column accesses
as possible.

For FFTW, array elements are 16 bytes (a pair of double precision floating
point numbers). Eight elements can fit into each 128-byte L2 cache line, so a
single cache column will be able to service as many as seven adjacent column
accesses before a cache miss will occur. However, if a cache column is larger than

68 Lixin Zhang et al.

Input Type Elapsed TLB hit L1 hit L2 hit Miss Speedup
Cycles rate rate rate rate Depth Overall

567x61x51 Base 3.1B 98.92% 92.66% 4.97% 2.37%
Impulse 2.2B 99.99% 93.50% 5.50% 1.00% 2.64 1.40

576x57x31 Base 1.8B 99.06% 93.03% 4.90% 2.07%
Impulse 1.2B 99.99% 94.55% 4.42% 1.03% 2.74 1.47

576x7x11 Base 36.5M 99.46% 92.53% 4.70% 2.77%
Impulse 18.6M 99.98% 93.92% 5.48% 0.60% 3.38 2.29

Table 2. Performance results for FFTW benchmark

the L2 cache, which is the case for input arrays with large y or z dimensions,
then almost every access during the depth phase will be a cache miss. The reason
for this is that each cache line in the cache column will be evicted before it can
be reused. For this benchmark, prefetching is ineffective because the amount of
work performed per element is dwarfed by the time required to load a cache
line from memory. Because FFTs of interest are performed on fairly large input
arrays, we evaluated the performance of DCA only for such arrays where the
cache column size exceeds cache sizes. Also, we only consider arrays with large
z dimensions and thus restrict our optimization to the depth phase. This makes
our results conservative, as additional performance benefits could be had by
applying DCA to accesses along the y accesses in the first phase of the FFT.
To reduce simulation overhead, we simulated an 8-kilobyte L1 cache and a 64-
kilobyte 64K L2 cache. For these cache sizes, the height of a cache column to be
at least 512. We arbitrarily chose input’s z dimension value to be 567 and 576.
the x and y dimension sizes also were chosen arbitrarily.

The FFTW library consists of highly optimized code for computing parts
of the transform, called codelets [6]. Every multidimensional FFT is translated
into a series of calls to these codelets. As part of optimizing FFTW to exploit
Impulse’s DCA mechanism, we modified each codelet to create dynamic indirec-
tion vectors pointing at the array elements being accessed by that codelet. As
in the random access benchmark, we unrolled-and-jammed the resulting code
and added prefetching instructions to overlap computation with the DCA oper-
ation. Conventional compiler-directed prefetching or data reordering techniques
will not work because the addresses and strides are input parameters for the
codelets, and thus only known at runtime.

Table 2 presents our results for the FFT benchmark for various input sizes.
DCA improves the performance of the depth phase by 2.64 to 3.48, depending on
the input size. Total application speedup ranged from 1.40 to 2.29. The reason
for these performance improvements can also be seen in Table 2. The use of
DCA reduces the miss rate by more than a factor of two, and TLB performance
improves significantly. The TLB performance improvement is due to the fact
that all DCA accesses are to a small range of addresses, rather than the entire
range of the input array.

Memory System Support for Dynamic Cache Line Assembly 69

6 Conclusions and Future Work

The development of the dynamic cache line assembly mechanism is still in its
infancy. Future work includes applying it to more applications and further opti-
mizing its performance. We believe the proposed mechanism can be effective for
many applications with poor locality. To confirm this hypothesis, we are evalu-
ating DCA’s potential on a mix of pointer-intensive programs from the Olden
benchmark suite, image processing programs, and irregular scientific application
kernels (Moldyn and NBF).

The performance of dynamic cache line assembly can be improved in a num-
ber of ways. The current implementation loads each cache line of the address
region from the memory before overwriting it with new addresses. If the proces-
sor we modeled had supported for write, no-allocate, such as is possible via the
Alpha 21264 WH64 instruction [4], we could eliminate this unnecessary cache
miss. Along the same lines, without support from the ISA, we must synchro-
nize flushes of the address region and the subsequent accesses of the data region
using memory barriers. A memory barrier serializes accesses before and after it
and can impede the processor access streams. One way to eliminate this effect
would be to extend the ISA with a special “indirection gather” instruction. The
instruction would combine a flush back of the address region with a prefetch of
the corresponding data region.

In conclusion, we believe that as the performance gap between processors
and DRAM grows, a more flexible memory interface will be necessary to hide
memory latency. Simply building larger on-chip caches will not suffice, and will
increase cache access latency. We have begun investigating the potential benefits
of allowing applications to selectively read/write data from/to random locations
in memory efficiently when conventional caching does not suffice. Our initial
experimental results have shown that for applications with poor spatial locality,
such a mechanism can improve performance by a factor of three or more.

References

1. S. Carr, K. McKinley, and C.-W. Tseng. Compiler optimizations for improving
data locality. In Proceedings of the 6th Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 252–262, Oct. 1994.

2. J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis,
C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse:
Building a smarter memory controller. In Proceedings of the Fifth Annual Sympo-
sium on High Performance Computer Architecture, pages 70–79, Jan. 1999.

3. M. Cierniak and W. Li. Unifying data and control transformations for distributed
shared memory machines. Technical Report TR-542, University of Rochester,
November 1994.

4. Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Reference
Manual, July 1999.

5. C. Ding and K. Kennedy. Improving cache performance in dynamic applications
through data and computation reorganization at run time. In Proceedings of the

70 Lixin Zhang et al.

1999 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 229–241, May 1999.

6. M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT.
In Proceedings of ICASSP Conference, 1998.

7. J. W. Manke and J. Wu. Data-Intensive System Benchmark Suite Analysis and
Specification. Atlantic Aerospace Electronics Corp., June 1999.

8. MIPS Technologies Inc. MIPS R10000 Microprocessor User’s Manual, Version 2.0,
Dec. 1996.

9. V. Pai, P. Ranganathan, and S. Adve. RSIM reference manual, version 1.0. IEEE
Technical Committee on Computer Architecture Newsletter, Fall 1997.

10. S. Scott. Synchronization and communication in the T3E multiprocessor. In Pro-
ceedings of the 7th Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 1996.

11. M. Swanson, L. Stoller, and J. Carter. Increasing TLB reach using superpages
backed by shadow memory. In Proceedings of the 25th Annual International Sym-
posium on Computer Architecture, pages 204–213, June 1998.

12. Y. Yamada. Data Relocation and Prefetching in Programs with Large Data Sets.
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1995.

13. L. Zhang. URSIM reference manual. Technical Report UUCS-00-015, University
of Utah, August 2000.

14. L. Zhang, J. Carter, W. Hsieh, and S. McKee. Memory system support for im-
age processing. In Proceedings of the 1999 International Conference on Parallel
Architectures and Compilation Techniques, pages 98–107, Oct. 1999.

��������	
 ������ ���� �� �� ����		����

�����
 �������������

��� ����������	
����� ���	 ���
���� ����������

� ���������	
� ���
�� �� ����������������
� �������� ����� ���������	

� �
� ���
� ����
�� ���
���
�	
�����������		
�����������
��� ��

��
�����
��

�������������������
�����
�	��

��������� ���� ����� �������� �� ��
����� �
 ���
������	 ��� �
��
�
 � ������� ��
����
��������
�	 ���! �	���� ���� �
������
� � �
��
��
����
� ��� � ���� ������ ���
�	 ��
����
�" �
 ������� ���� ����
��
����� #��� ���� �	��
� ������������$ �
�� ����� �
 �� �������
��� ���
�������� ���� ���� ���� �����
� �� �������� �
 ��� ��
����
�
� #���� ��
���� �
�� �Æ�����	" �� ������
�$ ��
����
�� ��
��
����� ����� �%����
��
� �� ���� �� �
�����"
&�� ��
����� �� �������� �� � �
����� ��� �������� �	���� ��� ����
��������
�� ��	 ���
������	 ����� �
�� ������ ��� �	����� ���
����
��
�" ����� � ���
� ��������
�� ��� � �������� ������������$ #� ��
���
����� ��������
� '"(
��� � ����� �
�� #��� ���� ���
�	" ��� ��������
��� ���	 �
�� ���
���� ������ ���� ���� ��������
� � �
�� �%�������
������
����
� �	���� �
��
���
� �#
 �������� �
�� ��
����
��" &��
#
�) ��
#� ���� �����
������	 ��� �� �
����*������	 �%�
����$ ��� ����
�������
�� ���� �
#��� �*������	 ������� �
�� �
 �
�� �������� ���
�	�����"

� �������	�
��

������������������� ����� �����	 �� ����������� ��������� ����� ��� ������ ��
��� ���� ����	 ������ ����������� ��� �������������� ���� �������� �������
��������� ��� ������	 ������� ��������� ���� ���!������� "#	 $	 %	 &	 '#	 '(')	
'$	 '*	 '&	 #'+, -�� ����������� �� �! ����� ����� �� �� ������� ��� ���� ������
����� �� � ���.������� �� ���/��, �� ���� ����	 ��� ����� ��� ��� �� �������������
�� ������ ���� �0�� �� ���� ���� �������� �� ��� ���� ������ ���������, ����
�������� �� ��.�� �� 1���/� ����� "'(+	 2�31 "$+	 ��� 4��051� "%+ �����
������,

���� ����� �! ��������� ��� ���/��� � ����������� � ��0 �! ����������6 ����
��� ������ ����������, 7��� ���������� ��� ���� �����! �	 ��� ���.�� � ��

� �� �%������ �����
�
� ���� ����� ������� �� +''," ���� #
�) #�� ����
���� �� ����
�	 ��� ����
�� ������� -
������
� ����� ������ ��- .
��� ����������
� �#���
����/01(023$ ����/3'/21'$ ��� ��4�//(5066$ 7�4�� �
������ 7�8�32�/1���
55/($ �������� ����� ���������	$ ��� ����� ��
� �8� ��� ����"

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 71–84, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

72 Yan Solihin, Jaejin Lee, and Josep Torrellas

���� ����� ����������	
 ��� 	�� � ������ ������ �� ������� ������ �����		��	
��� ������� �		 �������
 	�� � ���� ������ �� ������
 ��� ��� ��	� �� �������
��� ���� �������� ��� ���	���� �� �����		 �� ���	 ����� �	� ��� �� �����������
������� ���	� ������������	�

�������	 ���� �� ����������� ���	� ������������	 !
 "
 #
 $"% ������
������&�	 ��� ���� 	������	 �� ��� �� ������ �����		��	� ���	 �����		 �	 ���
����	������ �� ��� ����������� '� ��������
 �������	 ���� ��	 ����� ����	��
�� ����� �(������� �� ����������	 �� ��� ��� ������ �����		��	�

'� ���	 �����
 �� ���	��� � ������� ��� ���)���� �������� �� ��������)
��� ��������� �������	 ���� 	������	 ��� ��� ���� 	������ �� ��	 ��	� 	����*�
�����		��
 ���� ��(���+��� ��� �(������� ������ �� ��� ��	� ��� ������ ���)
��		��	� ,� ���� ��� �������� �� *��� �������� ��� ������� ����������	� ,�
&�� ���� ��� �������� �-������� �(����	 ��� ������������� �� ��� �������������

� ����������� 	�
�� ������������

DRAM
 banks

off-the-shelf interconnection

Processor Chip

 P.host

 L1 Cache L2 Cache

 P.mem

Memory Chip

L1 Cache

���

to/from P.host

readwrite-back

 P.mem

Memory Chip

L1 Cache

���

���� �� � ����	
 ���
		�
�� �
���� ������
����
�

�� 	������ ��� ���*��
 �� ���	 ����� �� ��� ���	���� ��� 	���� �����)
������� �� .����� $�/�
 ����� ��	 � 	���� ��	� �����		�� �������� ��� � 	����
������ �����		�� �������� ,� ��� �� ��� �����		 �� �(������� ��� ���������	
�� ��� ���� �� ������������	 ���� ������ �����		��	 �� ���� �����

�� ������ ��� ��	� �� ��� 	�	���
 ��� �����		�� ��� ������ ����	 ��� ���)
������ ���� �� �-)���)	��� ���������������� /	 � ��	��
 ����� ������ *� ���

Adaptively Mapping Code in an Inteligent Memory Architecture 73

������ �� �	�
�����������
�� ��
�
�
��� ��������
��� ����	������� �	���
� ��
	������� ������� ��� ���	� ��	������ ������� �	� �	��� ��� ���� ���	��
�	���
�� 	������� ���� �
���� ������� �� ���� ��������
�� ���
�� ��
���� �����
����
 ����!� �	�� �	��� ��
��� ���� � �
�� �� �����!� ����"� ���	�
� ����
�������
�
� �����
�� � ���! �� �	� �
�� #� ���
�
��� �	�� �	��� ��$����� � �
��
���� �����!�
� ����"� ���	� 	�� � ���! ��
�� �	� ���	� ������
��� �	� ����
������
�� �� �	���

%
�	 �	
� �������� ���	� ��	������ ��� �� ������� �! �	� ����
��� �
�	
�
���� ��������	
 ��� ��������� �������� �	�� ������� �	���"� ���	�� �	�
����
���
������ �	��� ��������
� �	� ������� ����
 ����!� ������ ���������
��
�&����
�� ���� �	��� �� ����� �	� �	��� ���	� ��
��� ���� ��! �
��! �
��� �	��
�	� ���� ��! ���� �� ���� ����	������� ������ ������
�� �&����
�� �� �	�
�	���� �	� �	��� ���	�
����
����� ��! �
��� �	�� �	� ���� ��! 	��� ��
����

� ������� 	
� �	����
�
�

'�� ����
��� ��� ���(�
�� �����
�	� �������
����! ���� ���	 �����
� ���

������ ����
���
��� �� �	� ���	
������� �� ����
��) �	� �����
�	� ������ �!
����
�
��
�� �	� ����
��� ��
�� �� �&����
�� ������ ������ *������ 	��� �
	���������� ��	��
��
� ����� �� ������
�� ��� �����! ��$�
�������� �&	
�
�
���� �����
�!� ��� ��� ���! �� �&����� ���� �	� ��
�
��� ���� + ������� ���

���
�
�� ��
� �� �	
�	 �� ��
�� �������
� � ����

%
�	 ����	 ������������� �� �� ����	 ������ + ���
� ������
� �
�	�� �
���� ���� �	��� ���	 ����
�� ����� 	�� ���! ��� ����� �� � ���� �� � �������
��
�	��
� �������� �� ���! ��� ���	 ���� ���� �	� ���� ���� ��! ���� �������
�������
�� ������

%
�	 �����	�� ������������� �� ���� �	� ���
� ������� ��� ��! �� �&����
�	�
� �
,� �� �� ����
�� ������� �� �	�� �	
�� ����
�� �	�
� ��	��
�� �����
���!
	���������� ��� ��	���
�� �����
�! �	� ������
� 	������� ������ -��(
����� ������� �� ��� 	��� �� �� ����� �	�! ��� ��������� �! ����
�� ���
�
������� �
�	 �����! ���������� �	�� ������ ��������
�� ���� ���� #� ���
�
���
�	�! ��� ���� ��������� �! ����
�
�� ��.����� ���
� ������� �	�� �� �&���� ��
	��� �	� ���� �Æ���� %� ��! �	�� � ������ 	�� �Æ�
�! ��� �	��� �� ����
�

� ���� ������ �� �	��� �� ����� �������
���!

�� ���
���� �	� �Æ�
�! �� � ���
� ������ �� ��� ��� �������	��/ ���
������
����
���
���� �� ��� � ��� �
�� ��� �
�	 � �
0�����
���� ���� �	
�� ��� �����
�
����
���
���� �� ��� 1���	
"� ����
� ����������� ����
���� 234 �	� ������ ���
(
����� �	� ������� ��� ���	� �
�� �
��� �� �	� ������
� ���	 ���������

� ��	���� � �����	���� �������

�	� ���
� �� �������� �������
����
 ��
� ����
�� 3 ���� ��� �� ��	������
��� �&����
�� �� �
�	�� �	��� �� ���� �	� ��	����� ��� �� ���
��� ����
����!�
����� �� �	� �Æ�
�! ���
����� �! �
�	�� �	� ����
� ����
���� �� �	� ��� �� �	
�
�������	 �� ���� ������

74 Yan Solihin, Jaejin Lee, and Josep Torrellas

����� ����	
�� ������
� � �� ��
�� ��� �
������ ��������� �� ��	 ���� �	
���
���� ���
������ 	����� 	������	����	
��� ���� ��������� �� ��	 ����
��� ���
���	 ��� �� ���� 	��
���	� �� ��� ������ ���� � ����
����� ���� ��
�� ������	�� �	 ������ �	� ���� �	 ������ ����� �	 ����� ���������	��� ���
��	���� ������ �
������� ��������	� ������ 	��
���	� ��� ������	��� ���
� ���	� ��	��
 �
�����	! ������!�� ��������� ��� ���"	 	 ����� #�

����� �� �������� �	�
��� ��������� ��
������

�
�� ��
� �� �� ����

������

����	

��������

���� �����
���� �� ������ ��� �� ������
������ ��� ��� �� ������ ��� �������
��
� �
� ��� �
��� �
����� ��� ������
��� ��� ��� �� ��� �����
���� �� ���
�����
�
�����

������

���

��	��

���������

���� �����
���� ��� �� ������ ������ ���
��� �� ������ ���� �� ��!
���� ����	 ���
���
����! � ����
�� ��� �"������� ���� ��
��� ��� ������ �"������� ���� �� ��� �����
�������� #
�� �� ��� �����! ��� �$��
%���� �����
���� � �������� �� ��� ������
�� ��
� �
� ��� �
����

&� �
�
�
�� �� ��
��� ��
��� $��
���� �� ��� ����
���
��� �����
�����

���

����	

��	
��

��� �
�� �����
���� �� ��� ������! ����
�
��� ����� ���� ���� ����
���� ��� �� ������
������ ��� ��� �� ������ ��� �������
��
� �
� ��� �
��� �
����� ��� ��� ��
��� ����
���� �� ��� �����
�����

&� ���	 ��' ��� ������
��
� �
��
�
�����������
����� &� �
	 �
�� ����
������
��

���

�����

���	����

��	
���

���� ����
���� �� (�� �����
���� ��� ��
������ ������ ����
���� �� (�� �����
����
��� �� ������ ��� ������� ��
� �
� ���
�
��� �
����� ��� ��� �� ��� ����
����
�� ��� �����
����
�� ��� ��� �� ��� �����
�
�����

&� ���	 ��' ��� ������
��
� �
��
�
�����������
����� &� �
 ��� �� ��
������
�! $�� �� �
	 ����
����
 ���� �����������

��� � ���	� ������!�� 	 ��� ����� ��� �� ���� �	��� � ���	� ������	��
����� $ ���� ��� ���� ������!� ����� �	 ��" ��� ������� �� ��� ������ ���
���	
����� �
���� 	��
���	� �� ��� ������ �	� �
���� ������	� �� � !��	 	��
���	
�� ��� �������

%	����� �� ������� ��������
��� ���
���	� "� ������� ���
��������	 ��
������ �	� ������ �� ��� �	�� "� ���� ��� ����
���	 	�� �"�
������ ��
��!�	�& ��������	
� ������� ��	��
� "���� ����� ��� ������� ������� ����
�	
�� ��	 	 �������� "�� �����
� �� �	� �	������ �	� ��������	
�
�	�� ��	��
�
"���� �	�� �	� ������
�	 �� ��	 �� � ��� ��
���� �� ����	��	
�� ���"��	
�������� '��� ���� ���� "� ��� ���
 ������		! ��
���� �
������ ������
������� �	�� ���������� ������� ���� �����������

Adaptively Mapping Code in an Inteligent Memory Architecture 75

����� �� ��������	
�� ������
 ������ ��������	 �
��
�	����

���� �����

��
����

�������� ������

������
����

�������� ������

�
���
����

���
 �
��
�	�

����
��
 ����
��
 ���� ���
 ������
���

� � ����
��
 ����� �� ������ ����

����� �� ����
��
 ������ ���
 �����
! ���� ����

����� �� ����� �� ������ ���
 �����

����
��
 ����
��
 ���� ���
 ������
���

" �� � ����
��
 ����� �� #

����� �� ����
��
 ���� ����

����� �� ����� �� #

�� ��� ���	
����� ����

�
 ������� �� ���
� ����
�� ��� ����	��� �� ���
���	
�� �� ��� ������� ����������� �� � ���	
����� ����
 ������ �� ��� ��
��
� ��� ���	
� ��� ��� ������ ��� ��� ������ ��� ��� ��� ������ �������

��
� ��� ���	
� � � �	

������

�

���� �� ���� ��� ������� ��	�� ��� ��� 	��
��	�
 ��	��� ���� ��� �������� �� ���� ��	�
 ��� �� ����	��� �������� �� ���
�� 	��
��� ����!	��� ������ ��� ��� ���������� ��� �� ����	� ��������"��
���� �� ���� �� ����� ������	�� � ����!
�� �� ���
� ���
� ��� !��� ���	����

�����	
�� �������� �� �����!�� �!����
�� �

 ����� �� ����
����� ����	���� �� ����� ��� �� ������� ��� ����

!������ ������ ��� ������ �� ��� 	�� ����� ��������
� ��������� �� ������
���������� #� ��

 ����� ����� ������� ��� �����	
� ���������
��

� ��������	
 ����

$�� ���� ��������� !� ��� ����
�� � �������� �� � %�&$�!���� '()* ��	
����
���������� '+)*� $�� ��	
���� ���������� ��� ����
 ������ �	������
��
���������� ��� ������� �������� !����� ��������� ��� ����!
����� ������
��������� '+)*� $�� ��������	�� ����
�� � ���� �� ������ (� ��� � !	� ����
������ ��� ��������� ��� ������ ����� $�� ��������	�� � ����
�� ���
� !�
���
�� ��
	��� ��������� ������� $�!
� , ����� ��� ���������� 	��� ��� ����
��������� �� ��� ��������	��� $�� -(����� �"� 	��� � + %!���� ������ ���
��� �� ��� ���
������ ./"�(0� ���� � ��	
���� ��� � 1+(�2!��� -(�
 	� ����� �� �����3� �
��� ����	���� � �������� !� ������ �������� �

%����� -��� 456% �������� $��� ���� �� ���!
� ��� ��������� �� ������

��� ���� ���
�� �� ���� �� � �
������
� ���� ��� 456% ������ ���� � ��
�
+)7
��� ����� ���� � � 456%���
� ��� '+,� 8*�
$�� ��!
� �
�� ��
	��� ��� ��������� ���
��� � ���
����� ��� �����

!���
��� ���� ������3� -(������ #� ���	�� ��� ��

���� �������� �	����� �
��� -(����� ������

��� �	����� ���� �� ���� �� ���� !��� ��� ����� �	��

���� $� ������� ��� ������

��� ������ �	���� �� �������� �� 19+���� ����� �	�

���
��� $���� ��� ������

�� ����� !��� ��� ������
��� � ��� !������	�� ����
�	� ���

�� ������� &���� �������� ���� ��� ���� !���� �	�� !� ����
���� !�����
������ ����	��� �� ������

76 Yan Solihin, Jaejin Lee, and Josep Torrellas

����� �� ���������� �	 �
� �������� ���
��������� ���
� ��� ������ �������� ����
������� �� �����������	��� ����������� 	��� �
� ����������

����� ��������� ����

��
��� ��������� ��� ���
����� ����
 ����	������ !������
����� "���� # ��� $ # �� $ % &�'(� �����
������) &�'(� �'*!
+����
 ������ # �����

����� ��������� ��� ���
����� ����
 �������� %������
����� "���� % ��� $ % �� $ * &�'(� �����
������) &�'(� #'#
+����
 ������ % �����

��
���
���
��

&*�,��� �������
���)
- .%�/+- %�0��- .%�+ ���- %�����
��

&%�,��� ������1��2- *��+ 34*%�/+ 	�� +���%5- #�0��- *%��+
���- *������
��

������+��2 6��
��� 4 $ *� ��� ����� �	��
 ����� �� ���)���� 7����
0���� 1��2 �	 ���� ������ �� 1��2)�����

��6�������� 6��
��� 4 $ *���� ����� �	��
 ����� ����� �� �� �������
�6������� 0��
 �����8� �9�������

�����
���
�

&*�,��� ������1��2- *!�/+- %�0��- .%�+ ���- %�����
��

������
: +��

������ &������ �	 ��0 1�;�� ����< *!� ����� 	��� ��
��� : %* �����
	��� �����
�	 ��0 1�;��
��< *4% ����� 	��� ��
��� : *. �����
	��� �����

+�� =��� (��� �����������- *!�+ 0���
,>7� ������ (��� !# �+ ��� �
��

������ ��� 	
�	 �� ���	 	� �������	� ��� ����� �	��
 ������ �� 	
�� �����
��
��	 ������ � 	�	�� ���
��� �� ������� ����� �	��
 ������� ��	� 	
�	 	
���
������ ��� �� ��������� ��	
 ����� �����	����
�� ���
��� ���� ����	� 	
�
!��� �����	��� 	��� �� 	
� �������	����
�� ��	 ������	�� �
�� ����� !���
��
�����	��� ��� ��
��	 �� �����	�� 	� �������

��
��	 ��� ����� ����
����"� �	 ������ ����������� #����!������ ��
��	
���	�� 	� � ��$��	�� �� ����� 	� ��$��� ����� 	
�	 �	 ��� ��$�� �����	���� %
��
�����
�� ������	�� �����	���� �	 ���	�� 	� ���	
�� ��� �� �	� ��$��	��� �� 	
�	
��
��	 ��� ��� �	�
� ���
���� ������ �� 	
��� ����
����"�	���� ��� ����������
�� ��� ������	����

� �������	���� �����	�� ��� ��������� ��� ��	�$�� ���$����& #��� ���
'$��� ���� #�()��*+++ ,�-� ����	 ���� #�()��.� ,�-� /0 ���� ,�1-� 22 *
���� ��# ,�-� ��� 3"��* ���� #�()��	*+++ ,�-� ��� 4��	��$5����	 �������	����
��� ������ ���������� ���� 6 �
��� 	
� ��	� ��	 ��"�� ���� ��� �
�	 	
� �������5
	���� ��� �����	��$� 2�� 3"��*� �� ������� 	
� ���� ��	
 	
��� �������	 ����	
��	� ��	�& 	
� ����	� ���� ��� 	
� ���� ����	 ��	� �
��� 	
� ����	* ���� ���

Adaptively Mapping Code in an Inteligent Memory Architecture 77

���� ����� �	 �
�������� �
��� �� �	���� ��� ��
 ��	�
� ����� ��� ��� ��
���
��	������ ���� ��� ����� ������ �	��� ����

����� �� ����������	
 �
��

����������	 ���� ���� �	 ������ �� ��������	
 ��
�������	

���� ��� � ���� �� ��������	
 ������� �����
��������	

������ ��� � ���� � ��������	
 !�������� ��
� "�	������	

#$ ��% � ��% #$ �����& ������
����	

�''�% %�� �����	�
� � ��������	
 '�
� ������� ���	
��������	

("��)*�)*�)* "��� � ��������	
 (����+"��
�� ��, �� ����	���� -��

.���% �	����, ����	 /�����

��	 �	 �������

��	
�	���%, ���
 ����� �	 ��
�
����� ��"������ 0�� �� 12

� ��������	
 �����

����� � ��
�� ��� ���������������
� ��� �����
�����
����	�� ��
�� �
������
���� ���
�	� �
� ��
� ��� �!�����
	 ���
	 �"������ ��� ����� ���
 ��
��
���� ��#���	� ���������
	� ��"� � ��#���	� ����������
	
� �Æ	��� �
� $��
�� �	�
$���

����� �� /���������
���
 �� ��� ��
�� �����
 ���� ��� ����� �� ���
� �	���

/���������
��� 03 �� 4���
� ����2 ���� ������ #$

����� (����
 �) 0������32 1 05)�*)32 � 055�5532

4������� (����
 �) 0������32 � 0�)��)32 � 01��)32
������ (����
 + % 0*����32 % 05%�)�32

(����
 ���� 4���
� �Æ	��6 � 0)��*32 � 0�7��)32 % 05%�)�32
(����
 ���� 4���� �Æ	��6 �� 05��*)32 * 017���32 � 01��)32

� ���"� �	 ������	
 ��� (���� ��1 ��� *�5�*

/���������
��� 03 �� 4���
� ����2 �''�% ("�� .���% 0����2

����� (����
 �1 055�%732 %� 055�1532 1� 07���132

4������� (����
 �� 05��5�32 �7 05)�7�32 %* 0��)732
������ (����
 % 0����32 � 0%�5*32 �� 07*�)532

(����
 ���� 4���
� �Æ	��6 7 0**��*32) 0%��5�32 �� 0�)�*�32
(����
 ���� 4���� �Æ	��6 5 0���%*32 �� 01��7732 %* 0%7�5)32

� ���"� �	 ������	
 ��� (���� �)77�� ����1 1��*55��

%����� � �	� %����� & ��
� ��� �!�����
	 ��� �
� ���� ���������
	� '	 ����
�����(��� ��
 ����
�� ���� �
�����
	� �
 ��		�	� ��� ���������
	
	 $��
��
��
	� ���������	�
��� �	�
	 $�� ��
	� ������	�
���� ���	(����� ��� 	�	�
�����
� ��
 ����(����� ���� ���� �
�����
	�� �
 � ��#���	� ���
� �������
	�	�

78 Yan Solihin, Jaejin Lee, and Josep Torrellas

��� ������	
��� �
��� ��
� ����� ��� ������
�� �
�� �� ������ ��� �����
���
�� ��� ��������
	� ��� ����� ������ ����
��� ������	 �������
��� ��� ��
��
�� ���� ���������� �� ����
� ������	
�� ��������� �����
� �������
�	 ������	
��
�
�� ���
� ����	�� �����	
� ����	
�� ��
� ��
��� �����
� �������
�	 ������	
��
�
�� �������� ����	�� ��������	
� �������	
��� ��� ����	����� ������	
��
���
����� ��
����� �� !"
�#� �
��� �� ���� ���
���� ����� �� ��	� ���� �
������ �� ��� �����

��������	
���� ��������

����	�����
� ��� ���
�����
� ���� ���� ��� ��	��
�� ������
� �� ������
��
��� ������ ���
�
�� ���
�� ������ ���	
���
���$ %�
�� �������� ��� &��
� ���
������ �� ������ ��
	� '(���� ������ �� ������ ��� � �# ���� ����		� ����
�� ���� �����������)�����
�� �� ���
���� ���� !"
�# ��� �� ���� ������ ��
������ �� �	���� �� ����
� ������ ��
� ������ *����		� ����� ���� ���� ����
��
���� ������ ��� �����
� ��� ���� �	��� �� ��� �		 ��� ����� ���	
���
��� +�
�� ���	
���
�� �������� �� ��� 	��� ���
��	 ����������
� ��� ���� �� �� ,--.
	����� �� ����

������ ������	�� ����	��
� ��� /���
��0��
�� ���	
���
��� ������
�� �� ���
����
� ����
����1
� ��� 	����� ������ ���
���� ��� �Æ�
��� ��� ����	� ���� ��
������� ��� ��� 2����� �� ��� ���� ������ �������� ��	��
��	� ��		� +� ���� ��
��
���� ��� %�
�� '(� ��� � �#� *����		� ������
� �������
�� ������� ��
�� �
�0
�	
�
��� 3������� ��� ����
� ����
���� ���� ��� �������	� ���	�"� ��� ����	
�����
����
� ���
������ ���	
���
�� �!"
�#�� 4���������	�� ������
� !"
�# ���� ���2	0

��
�������
��� ��
�� ���� ��� ��������
	� ������� ��		� %���
2��		�� ���� ���

���� ���
� ���� �
5����� ���� ���
���� ��� ���� ��� ���2	
��� ������ ��������
����	�� ��
�
� ����� �
�� +����#
� !"
�#�

����	
 ��� ����	
� ���� �� �� ���� ���
���� ���� ��� ����		� �� ���� ��
������ ���� ������� ��� ������
� ���� ���� �����
��	� ��� ��� ����	�� �� ���
���������� ��� ��
�� ��� ����	�� ���� ��� ���� �Æ�
��� +� ��� ������� �� ��
��
��� �������� ���� ��� 	
��	� �� ��� ���� ����	� ���0���
��		� �� 	���� �����

����	
 ��� ����	
� ������ �
�
	��	� ��� %�
�� �������� &��
�� ��� !"
�#
�+����#�� +� ����� ���	
���
���� ��� ����	���
� � �
��� ����	� ����� �� ����
�
�������� ������
������
���� � � ����	�� ����	
� ���� ��� �5�� ��� ���������
���� ����	
� 3�������
� '(� � �#� ��� !"
�# �+����,�� ��� ����	���
� �
�
��� ����	� ���
�� ������
������
���� ��� ���
��
�� �� ��� ����	��
� '(���
!"
�# �+����,�
� ������	� ��
�� ����� ���� ����	
� ��� ����� ��		� ��� ����	�

� ���� ����	
�
� ����� #-. ������ ���� ����	

� '(� +� � �#� �������� ���
����	��� �� ��� 	������ ����	� ���
�� ������	�� �
�� ����� �� ����� 6
�����0
�
���� ���� ��� �� ����� ������ �����
� �������� �� � ���������� ��� ����	�
�
������	�� �� ��� ����� ��������� ��� ���� ����������
������
���� ���� ������

� ���	� ��� ������ �� ��� 2��� ���������� ��
� �����
�� �
������ ��� ������
������
�� �� ��� ����	
� �	���
���� �	��
��
� ���� �	
���	�� ��	��
�� �� ����	
�

��� 2�� �������
�� ��� ��� �� �������
��� %���
2��		�� ��

� �����
��� �	��
������� �� ��� �
�� �������� ����	�
�� ����
�� �������� ���
�
�� ���� �� �#��
� ��� ��
�� �	������
� ��� ��� 	����� ���
�
�� ��� �������� �� �		 ��� �����
�
��������
� ����� ��5��� ������� �		 ���
�
��� ��� ���� ����� ���	��
��	� �� ���

Adaptively Mapping Code in an Inteligent Memory Architecture 79

Swim

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

P.host(a
lone)

P.m
em(alone)

Static_P.host

Static_P.m
em

Coarse_P.host

Coarse_P.m
em

CoarseR_P.host

CoarseR_P.m
em

Fine_P.host

Fine_P.m
em

FineF_P.host

FineF_P.m
em

AdvCoarse_P.host

AdvCoarse_P.m
em

AdvCoarseR_P.host

AdvCoarseR_P.m
em

OverSta_P.host

OverSta_P.m
em

OverDyn_P.host

OverDyn_P.m
emNo

rm
ali

ze
d E

xe
cu

tio
n T

im
e

Busy Memory Other Idle WB&INV

Tomcatv

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

P.host(a
lone)

P.m
em(alone)

Static_P.host

Static_P.m
em

Coarse_P.host

Coarse_P.m
em

CoarseR_P.host

CoarseR_P.m
em

Fine_P.host

Fine_P.m
em

FineF_P.host

FineF_P.m
em

AdvCoarse_P.host

AdvCoarse_P.m
em

AdvCoarseR_P.host

AdvCoarseR_P.m
em

OverSta_P.host

OverSta_P.m
em

OverDyn_P.host

OverDyn_P.m
emN o

rm
ali

ze
d E

xe
cu

tio
n T

im
e

Busy Memory Other Idle WB&INV

LU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P.host(a
lone)

P.m
em(alone)

Static_P.host

Static_P.m
em

Coarse_P.host

Coarse_P.m
em

CoarseR_P.host

CoarseR_P.m
em

Fine_P.host

Fine_P.m
em

FineF_P.host

FineF_P.m
em

AdvCoarse_P.host

AdvCoarse_P.m
em

AdvCoarseR_P.host

AdvCoarseR_P.m
em

OverSta_P.host

OverSta_P.m
em

OverDyn_P.host

OverDyn_P.m
emN o

rm
ali

ze
d E

xe
cu

tio
n T

im
e

Busy Memory Other Idle WB&INV

���� �� ��������	 ��
� �� ��� ��������	�� ��� ��� �� ������� �	�� ��������	 �� �	�
��������	� ������� ���� ��� ��
�
��� ������� �����	��� ���� ��� �� ������	� �����
�
���	�� ��
� ����	� ��� ��� ����� ��������� ������ 	� ��
� ���	� �����	� ��� ��
�	������	� ��	�� �	 ��� ����� �� ����� ��������

80 Yan Solihin, Jaejin Lee, and Josep Torrellas

TFFT2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P.host(a
lone)

P.m
em(alone)

Static_P.host

Static_P.m
em

Coarse_P.host

Coarse_P.m
em

CoarseR_P.host

CoarseR_P.m
em

Fine_P.host

Fine_P.m
em

FineF_P.host

FineF_P.m
em

AdvCoarse_P.host

AdvCoarse_P.m
em

AdvCoarseR_P.host

AdvCoarseR_P.m
em

OverSta_P.host

OverSta_P.m
em

OverDyn_P.host

OverDyn_P.m
emN o

rm
ali

ze
d E

xe
cu

tio
n T

im
e

Busy Memory Other Idle WB&INV

Mgrid

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

P.host(a
lone)

P.m
em(alone)

Static_P.host

Static_P.m
em

Coarse_P.host

Coarse_P.m
em

CoarseR_P.host

CoarseR_P.m
em

Fine_P.host

Fine_P.m
em

FineF_P.host

FineF_P.m
em

AdvCoarse_P.host

AdvCoarse_P.m
em

AdvCoarseR_P.host

AdvCoarseR_P.m
em

OverSta_P.host

OverSta_P.m
em

OverDyn_P.host

OverDyn_P.m
emN o

rm
ali

ze
d E

xe
cu

tio
n T

im
e

Busy Memory Other Idle WB&INV

Bzip2
input1 input2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

P.host(alone)

P.mem(alone)

Static_P.host

Static_P.mem

AdvCoarse_P.host

AdvCoarse_P.mem

AdvCoarseR_P.host

AdvCoarseR_P.mem

P.host(alone)

P.mem(alone)

Static_P.host

Static_P.mem

AdvCoarse_P.host

AdvCoarse_P.mem

AdvCoarseR_P.host

AdvCoarseR_P.memN o
rm

ali
ze

d E
xe

cu
tio

n T
im

e

Busy Memory Other Idle WB&INV

���� �� ��������	 ��
� �� ��� ��������	�� ��� ��� �� ������� �	�� ��������	 �� �	�
��������	� ������� ���� ��� ��
�
��� ������� �����	��� ���� ��� �� ������	� �����
�
���	�� ��
� ����	� ��� ��� ����� ��������� ������ 	� ��
� ���	� �����	� ��� ��
�	������	� ��	�� �	 ��� ����� �� ����� ��������

Adaptively Mapping Code in an Inteligent Memory Architecture 81

���� ��� ����	���
� �� ��� ���� �
��	���
 �� ��� ������� ��
�����
���� �
����
��� ������	� �� ��� ������ �� ��
��	
� 	����� �
��	���
� 	
� ����	���
�� ���
�������
 �� ������ �� �� ���������	� �����	���

��� ������ ���� ��	� 	�	
��� �	������
�
� �	� ������ ���	�� �
 ��� �������
�	
�� ��
������ 	�����	���
��
����� ��� ��������	 	
� ��������	
 �	�� 	��
�����	� �� ��� �����	 	
� �����	
 �
��� ��� ��	��
 �� ��	� �	��� ������� 	�� 	��
��	�� �	��� �
���� �� ��	�� ��������
� 	
� ����� �����	��� !������ 	�	
���
�	������
�
� �� �"����� ��� #$��%� &�������
�� ����
 �
 ��� ������ ��������	
	
� ��������	
 	�� ���
���	
��� �	���� ��	
 �����	 	
� �����	
 ��� #$��%� ���
��	��
 �� ��	� �	��� ������� 	�� ����� ��	�� �
 #$��% 	
�� ���������� �����	��
	�� ���	����� �	����

'��	��� �� ��
����� ��	�� 	��
� ���
�
�����	���� �(������
 ��������
��������	
 �� ��� ����� � �� �
 	��	�� %)* �	���� ��	
 ����������	� 	
� %+*
�	���� ��	
 ���	������	��

���������� 	
������

'���	���� �(������
 ������ �� ��� 	�����	���
 ���
���	
��� �
) ��� �� ,
	�����	���
�� -������	���� �
 -���� ����	�� 	
� .����� ��� ����	���� �������
��	���� 	
� ��	���� ����� �� ��� 	�����	���
 ��)+�/+* ���	��� �� ��������	
�
0��� ����� �������� �� 	�� �����$�
� ��������� ��������� ��	� ����� ���������
���	�
 �����
 12 	
� #$��% �
�� ����
�� ��� ����	���� ������� �	�
�
���	�� ��� ��������	
� ��� ��	��
 �� ��	� ��� ���� ���
���	
� ������� �
 �����
����� �	� ����
��
��� ��	� ����
� ���� ���� ���
� �	������
�� �������
� ���
	�������� �� -�����
 /�

 �33�%� ������� ����	���� �(������
 ��
�����	��� ������ ��	
 ����
�����	
� ��� ��	��
 �� ��	� ����	���� ��������
� �
����� �(��	 �����	�� �

4������ -������	���� �� �	���� �(��	 �
��������
 �(������
 	
� ���� �	��� ������
�
 4������ 	�� �� �
���� �	�	 ������
��� ��� �(��	 �
��������
� 	��
�����	�� ��
����� �	�� 	
� �
	���	�� �	���� �	�	 ���������� ���
 �(������
 �� ��	
�������
�� 4���� 	
� �	�� ������� �
 3�����)� 	
� �� ��
��	�� ��� 	�������� �� �����
�	�	 ���������� ������� ���� �
 3�����)�� ��� �(��	 ������ ����� ���
� 	����
��� �	��� �
	���	���
�� ��� �	�	 �� ����	��� �
�� 4�����5� �	��� ������� 	����
����� �
 3�����)��

�������
���� ��� ��	�� ��� �33�% ����� ��	�� ����� ��	���� ��"��� ���	���
���� ����� �����	��� ��	���� �� 	��� �� �����
	�� ���� �� ���� 	
� �
�� �	���
6%* ��
��� ��	
 ��������	
� ��	���� �� ������ ���	��� �� �� 	�	�� �� ��� �(�
��	 �����	�� �
���� ���� ����	���� �(������
 	
� ��������� ������� ����
��
���	������

'��	��� �	��
� ��� 	��	�� ��� 	�� 	�����	���
�� ��	���� �� 67* �	���� ��	

��������	
� ��� ����
�
�����	���� ������� ��
�����
���� ��	���� �� ��� ����
������ �� 	�� 	
�� ���������� ����	���� �(������
 �� ��� �������

�������

&� 	 ����	��� �	��� , ����	��� ��� �������� ���	�
�� �� ��������	
 	
�
��	����� 	
� ��� ����� &��	��5� �������� ��� 	 �	���
� ��	� �	� % 4�����
���������� ���� ��	�
 ������� 3��� ��� �	���� �� �	
 ��� ��	�� �� ��

�
� �	��
������
 �� ��� ���� �
 ��� ��������� ����� �� �(���� �� �� ��
 ����� ��	����

82 Yan Solihin, Jaejin Lee, and Josep Torrellas

�������� �	 �����
� ������� � ��� ��� � ��	
�� ��� ���� ����	 ������ ���

���������	 �������� ��� ���� ���� �	� ���	 ��
��� ���	 ��� ����� �������� 	 �

��� ����	���� ������������ ������ ������ � �� ���	����� ��� ���������

����� �� ��������	
�����
� �� �����	��	 ���
�����
� ���� ���� �� �����
�
 	���� ���� ���	���

����������� ����������	
�
�������
�

����������	
�
�
���	

����� �
��	

� ����
�

���� �� ! ��!� ��""
#������ ���! �� " �� !
$� ��� ���� ��"%
#&&#� ��%� ���� ��'�
(��� ��") ��)) ��'%
����� *�����+ ��)! , ��""
����� *�����+ ���! , ��""

�����	� ��-� �� ��)'

� �������	���

�� �����	��� �	� ��������� � ������� �	� ��	����� ��
����� � ��������

����� �������	 �	� ��� ��� � � ������ �	�����
�	� ����� ������������� �

���� �	�����	 �� ���� ��� ���������	� ��	 ���� 	 ��� ������������ �����

����� ����� ��	 ���� 	 ��� ������� ������ !��������� ��� ���� �� ���� ��

��"���	� ��� �����	� �����	 �	 ���������	� #������ �� ������� �	������ ����

� �����
�	��� ��� � �������� �� � ������	
 ������� � �������� ������

����	� �����"��������� ��� �����"������	��� � ���� ������������� �� ��$��� �

�� ��
��� ���	 ���� � � �	��	��	�� ������������ ������ ���� ��
�	���

��������� �� ��� �	 ��� ������ � ����	��	
 �� ��
������ � �������������

���� ������� ������ �	� ������� �������

 ��������������

�� ���	$ %� ����� �� &���� '� '������� �� �� (� '�	��� �	� �		����

��������� �� ������ ��������	 �	� �������$ 	 ��� ����� �����	 � ���� ������

�� ��� ���	$ (� &��	
)� *�	�� �	� '� '������� �� ���� ���� ��� �������

���� �	 ���� ������

����������

.�/ 0�� �������� ��������1� ����233������
���
��	��3�4
3#���5�����
3
0��������
30��,'6,""'3�

Adaptively Mapping Code in an Inteligent Memory Architecture 83

��� �� ���	
� �� ���
������� �� �����
� �� ������� �� �������	���� �
� �� ��
��������
� !��"#
���������$� !����%� &�� ����'
��
��$� (��	��) !��$�����
���������	
 �� �� �� ����
�� �� ��� �����
 �� ��������	 ��
���
 �������
����� *���� +,,,�

�-� .� .����$�/� 0� ������� �� �� ������ �
� �� ����� .����/�'���� ����� ���&��'
��
�� ���������
�
 ������ ������������� ����
�� �� ��	!�	�
 ��� "������
��
 ��� �������� "���!���	� +,,,�

�1� �� .����� �� !��
� �
� *� 2�//� .����/�� ���
�&�������
� &�� "3�/����
% ��
�'
	���� �
 � *'����� !4������
 ���#��	 �� $����� ���� ���%��� ����
���
��
� �555�

�6� !��
���� ���&����
�� "$�/�����
 .���������
� ����#77			��������%�
�8� *� 2�//� �� ��%%�� �� ��//��� �� ��
��� �� .����� �� ������� �� 0�.���� �� 9��
��)��

�� ����)��
� �� !��$����$�� :� ������ ;� <����� �� !��
� �
� �� ���)� *����
%
 ���%�/�� ���/������
� �� � ;�� � � *'����� ����'
��
��$� �������������

�!�������!���	 &''' ��"''�� (�$����� +,,,�

�=� !� !� 4�� �
� 2� 0� ��/���� "������� ���* ����
�/�%4# ������
����� �
�
.��//�
%��� �(((������!�� ����/ +,,,�

�>� ?� ��
%� *� 2��
%� !� ?��� @� 9�� �� ���
� ;� 0��� �� ����
��)� �
� �� �����//���
</�3��*# ��	��� �
 ��$�
���
��//�%�
� *����4 !4�����
 ���������	
 ��
�� ������������� "��������� �� "���!���)�
�	�� ������ +,,,�

�,� �� ��%%�� !� ����� �� ����)��
� �� .��
� �
� "� !��� ������
% � ����A��# ���
�
����%
� &�� +55 �< .�������� B��
% � * ����
�/�%����
 ���������	
 �� ��
&''* +�������
 �� $�

�#��� �������� "���!������ �����
�!�� +,,8�

�+5� ;� �����
�
 �
� �� �����//��� �
 "3������
'���$�
 <����	��) &�� <��� �
�
�������� !���/����
 �& !�������/�� �����������
 ������������� "��������� ��
�������� ,�������!��
 ��� "���������� �����-!�
 ��,"��� ������ +,,>�

�++� �� 0��� ?� !�/���
� �
� �� �����//��� ����������//4 *����
% .��� �
 �

��/'
/�%�
� *����4 �������������
 ������������� �����
�!� �� ��	 �����������
"���!��� ,�������!��� ��
���4 �55+�

�+�� �� *��� �� ����)�� (� ��4���
�� �� 2�� �
� *� 2���	���� !���� *�������# �
*���/�� ����
C%����/� �������������
 ������������� �����
�!� �� "���!���
,�������!��� ��
� �555�

�+-� �* *�����/�����
���� �/�� 0�%�� !�'�=" �! .�
 .��
 ��� ����
 �� �/$
$��������������
� <������4 +,,,� ����#77			��������������7
�	�7+,,,7���=��

�+1� *� �)�
� <� .��
%� �
� �� !���	���� ����$� ��%��# � .���������
 *���/
&��
��//�%�
� *����4�
 ������������� �����
�!� �� "���!��� ,�������!���
��%�� +,�D�5-� ��
� +,,>�

�+6� *� �)�
� �� 2�
�/�4� �� ���
� <� �� .��
%� *� <����
�� �
� �� .������ "3'
�/����
% 0� �
 ��%�'�����
��//�%�
� *����4�
 ������������� �����
�!� ��
$������������!��� (�$����� +,,,�

�+8� �� ��������
� �� �
�����
� (� .���	�//� �� <����� �� �����
� .� ���4��)���
�� ������ �
� �� ?�/��)� � .��� &��
��//�%�
� ���*�
 �((($����� ��%��
--D11� *����7����/ +,,=�

�+=� �� ��������
 �
� *� !����� :��)���� �
 *�3�
% 0�%�� �
� ���*# .���� ����
.������ �
� ��������� +,,=�

�+>� :� 2� ������ !� �� ���)�/�)4� :� �� ;�����/�
%� �
� �� �� </�

��4� (�������/
������� �
 <�����
 ==� .������%� B
�$�����4 ������ +,,��

�+,� !� ��3
��� :� �� ��//4� B� �� ������� �� ����/�
4� �� 0����'0�%�
��� �� �� *���'
��
� �
� �� �� 	�
�� � ��
�	����'"Æ���
� ������������ &�� *���� ��������
%�

 ������������� �����
�!� �� $������������!��� (�$����� +,,>�

84 Yan Solihin, Jaejin Lee, and Josep Torrellas

���� �� ���	
�� 	� �� ������� ����� � ���	� �	� ��� �Æ���	� ��� ����	 �� �!���"
�����# � ���$����

��
� �	 ���������	% $&�
 ��'(��)% �	 �# '**+�

��'� �� ,�	&���% �� �#���% -� ���.��
!	% �� ��.�% ,� /��% �� /��% �� 0��%
�� ��	.% 1� ��	�!% �� 2� % �� 233% �� ���
�	&!�% 	� �� �&���� 2��	&
�� ��� �� �������� �� ��!�	�
�
��� �������% $&�
 45(*6% ��$���3�� '**)�

The Characterization of Data Intensive Memory
Workloads on Distributed PIM Systems�

Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

Department of Computer Science and Engineering
University of Notre Dame

{rcm,kogge,arodrig6}@cse.nd.edu

Abstract. Processing-In-Memory (PIM) circumvents the von Neumann
bottleneck by combining logic and memory (typically DRAM) on a single
die. This work examines the memory system parameters for constructing
PIM based parallel computers which are capable of meeting the memory
access demands of complex programs that exhibit low reuse and non uni-
form stride accesses. The analysis uses the Data Intensive Systems (DIS)
benchmark suite to examine these demanding memory access patterns.
The characteristics of such applications are discussed in detail. Simula-
tions demonstrate that PIMs are capable of supporting enough data to be
multicomputer nodes. Additionally, the results show that even data in-
tensive code exhibits a large amount of internal spatial locality. A mobile
thread execution model is presented that takes advantage of the tremen-
dous amount of internal bandwidth available on a given PIM node and
the locality exhibited by the application.

1 Introduction and Motivation

Processing-in-Memory (PIM)[14,13,4] (also known as Intelligent RAM [21], em-
bedded RAM, or merged logic and memory) systems exploit the tremendous
amounts of memory bandwidth available for intra-chip communication, and
therefore circumvent the von Neumann bottleneck, by placing logic and memory
(typically DRAM) on the same die. This technology allows for the construc-
tion of highly distributed systems, but with a very large latency gap between
high speed local memory macro accesses and remote accesses. The construc-
tion of high performance systems incorporating PIMs must successfully exploit
� An early part of this effort was sponsored by the Defense Advanced Re-

search Projects Agency (DARPA) and Rome Laboratory, Air Force Materiel
Command, USAF, under Cooperative Agreement number F30602-98-2-0180 as
part of the Data Intensive Architecture Project under the Data Intensive
Program. The U.S. Government is authorized to reproduce and distribute
for Governmental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Rome Laboratory, or the U.S. Government.

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 85–103, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

86 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

the bandwidth available for on-chip accesses while simultaneously tolerating very
long remote access latencies. Multi-threading, similar to that used in the Tera[1],
seems the natural method for tolerating remote accesses, however, such a model
does not inherently take advantage of the relatively large amount of quickly ac-
cessed memory available on a PIM node. In fact, the Tera generally requires
about the same amount of persistent state available in the L1 cache of a mod-
ern microprocessor[1], and a typical PIM node is likely to have 3 to 4 orders of
magnitude more memory available.

This paper describes the memory access behavior of several canonical data
intensive applications (that is, applications which exhibit frequent data accesses
in a highly irregular pattern, and low reuse). These applications, which are par-
ticularly difficult for most modern architectures to accommodate, represent sci-
entific problems of significant interest. Thus, the ability to successfully cope
with their requirement will yield tremendous insight beyond the more simplistic
benchmarks used today.

The characterization of these memory workloads is determined using a single
threaded trace generated from actual program execution. This represents the
first step in modeling a multi-threaded system and identifying a simple data-
placement scheme.

This paper is organized as follows: Section 2 describes the benchmarks and
the rational for for choosing the Data Intensive Systems suite. Section 3 provides
an overview of PIM technology and the general assumptions behind the system
simulated. Section 4 enumerates the simulation methodology and describes the
desirable outcome of simulation (that is, the condition of success). Section 5
describes the mechanism for analysis, particularly focusing on the Cumulative
Instruction Probability Density (CIPD), which will indicate the measure of the
degree of success. Section 6 provides the results of experimentation which de-
termine both the size and form of a well constructed working set. Section 7
describes the simulation of a mobile thread model of computation in which a
thread travels throughout the system looking for the data it needs, as well as
the costs and benefits of such a model. Finally, Section 8 contains the conclusions
and a description of future work.

Further details on the experimentation described in this paper, as well as a
complete set of results for all the benchmarks can be found in [18].

2 Benchmarks

This work concentrates on the analysis of the Data Intensive Systems (DIS)
benchmark suite[2,3]. These benchmarks are atypical in that their memory access
patterns exhibit a low degree of reuse and non-linear stride. Thus the focus
will naturally be on the performance of the memory system over that of the
processing elements. Clearly in the case of PIM the interaction between the
demand for data and its supply is the preeminent characteristic under study.
Most benchmark suites, in sharp contrast, are designed to be quickly captured
in a processor’s cache so as to measure raw computation power. This is somewhat

Data Intensive Memory Workloads on Distributed PIM Systems 87

misleading since the performance of most modern architectures is determined by
that of the memory system.

Early work focused on the performance of the SPEC95[20] integer and float-
ing point benchmarks. The results of those experiments tended to be unenlight-
ening as the memory access patterns were both regular and easily accommodated
by even a small PIM (which has significantly more persistent state than modern
caches). Tests in which the data set sizes were increased did not fare much better
in that the benchmarks themselves tend to use data with a high degree of both
spatial and temporal locality.

Significant research was then undertaking using the oo7 database benchmark[6]
with the underlying implementation by Pedro Diniz at USC’s Information Sci-
ences Institute, which proved significantly more interesting in that it uses more
irregular data structures. Finally, with the release of the DIS suite, which includes
a data management benchmark, a sufficient number of distinct data intensive
applications were available as a coherent benchmark to allow for meaningful
comparison amongst complex applications.

Additional experimentation was performed using a simple Molecular Dynam-
ics simulation[12], which is of significant interest given its highly complex mem-
ory access patterns and IBM’s Blue Gene project which will use PIM technology
for similar protein folding applications. For reasons of brevity, that experimen-
tation will not be summarized here, but can be found in [18].

The DIS suite is composed of the following benchmarks:

– Data Management: implements a simplified object-oriented database with
an R-Tree indexing scheme [11,16]. Three operations are supported: insert,
delete, and query. For the purposes of these experiments, only the query
operation was examined.

– FFT: is a Three Dimensional Fourier Transform which uses the FFTW
library for optimization. This operation could have been included as the
first step in both the Ray Tracing and Method of Moments benchmarks,
however given the code’s relatively common use, it is treated separately.
(Both the Ray Trancing and Method of Moments benchmarks take data
already converted into Fourier space.)

– Method of Moments: represents algorithms which are frequency domain
techniques for computing electro-magnetic scattering from complex objects.
Typical implementations employ direct linear solves, which are highly com-
putation intensive and can only be applied to reasonably low frequency
problems. The faster solvers applied in this benchmark are memory bound
since reuse is extremely low and access patterns exhibit non-uniform stride.
This benchmark is derived from the Boeing implementation of fast iterative
solvers for the Helmholtz equation [8,10,9].

– Image Understanding: attempts to detect and classify objects within a
given image. This implementation requires three phases: morphological fil-
tering, in which a spatial filter is created and applied to remove background
clutter; determination of the region of interest; and feature extraction.

88 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

– Ray Tracing: is a component of Simulated SAR benchmark, and represents
the computational core. This portion of the program consists of sending rays
from a fixed point and determining where they interact with other objects.

3 PIM Technology and Architecture

Modern processors require that tremendous amounts of data be provided by the
system’s memory hierarchy, which, is becoming increasingly difficult to supply.
The core of this problem, known as the von Neumann Bottleneck relates to the
separate development of processing and memory technologies, and the different
emphasis placed on each. Processors, built around logic fabrication processes
which emphasize fast switching, generally follow Moore’s law, while memories
emphasize high density but relatively low data retrieval rates. The intercon-
nection mechanism between the two is a narrow bus which cannot be greatly
expanded due to the physical limit on the number of available pins and high
capacitance of inter-chip communication.

Developments in VLSI technology, such as the trench capacitor compatible
with a logic process developed at IBM, now allow for fabrication facilities which
offer both high performance logic and high density DRAM on the same die. These
PIMs further allow for the creation of much higher bandwidth interconnection
between local memory macros and logic since it all occurs on chip.

Several proposals exist which attempt to fully utilize the potential of these
fabrication developments. The IRAM project [21] at Berkeley seeks to place
a general purpose core with vector capabilities along with DRAM onto a die
for embedded applications. Cellular phones, PDAs, and other devices requiring
processing power and relatively small amounts of memory could benefit tremen-
dously from this type of system, even if one only considers the potential advan-
tages in power consumption. Others, such as members of the Galileo group[5] at
the University of Wisconsin see PIM as having tremendous potential in standard
workstations where the on chip memory macros would become all or part of the
memory hierarchy. More recently, the Stanford Smart Memories project[17] be-
gan exploring the construction of single chip systems capable of supporting a
diverse set of system models.

The DIVA project [13] is currently investigating system and chip level im-
plementations for PIM arrays functioning as part of the memory hierarchy in a
standard workstation. Finally, the HTMT[22,15] project is a multi-institutional
effort to construct a machine capable of reaching a petaflop or above in which a
large part of the memory hierarchy consists of PIMs being designed by the Notre
Dame PIM group. This portion of the memory hierarchy is a huge, two-level,
multi-threaded array.

Figure 1 show a typical single node PIM layout. In the case of the target
ASAP Architecture[19], a vector processor (capable of operating on 256 bit vec-
tors in 8, 16, or 32 bit chunks) is tightly coupled with a set of memory macros.
For the purposes of simulation, it is assumed that the memory macro provides
2 k-bits of data per operation through a single open row register. The ASAP’s

Data Intensive Memory Workloads on Distributed PIM Systems 89

MEMORY MACRO

ROW
DECODER

ROW

PROCESSOR
(Wide Word Vector Unit)

REGISTER FILE (256-bits wide)

SENSE AMPLIFIERS

OPEN ROW REGISTER (2K-bits)

COLUMN DECODER

COLUMN

REQUESTED VALUE (WIDE WORD)INCOMING
ADDRESS

(WORD LINE)

 (BIT LINE)

Fig. 1. Typical PIM Memory Layout

register file then accesses that data in 256 bit chunks. Thus, while a random
read from memory will cause a DRAM access, a read contained in the current
open row does not incur that penalty (because it is simply a register transfer
operation).

The array of PIMs simulated is assumed to be homogeneous. Furthermore,
for the purposes of this paper, no particular interconnection topology is as-
sume (rather, communication events are merely counted). Experimentation over
various topologies can be found in [18]. In actuality, a PIM array is likely to
be heterogeneous (potentially consisting of PIMs of different types – SRAM
and DRAM – and different sizes), and the interconnection network hierarchical.
Multiple nodes may be present on a chip, facilitating significantly faster on-chip
communications mechanisms. Additionally, since PIM systems may be part of
a larger memory hierarchy, additional non-PIM processing resources or memory
may be available.

PIMs, in our model, communicate through the use of parcels, which are mes-
sages possessing intrinsic meaning directed at named objects. Rather than merely
serving as a repository for data, parcels carry distinct high level commands and
some of the arguments necessary to fulfill those commands. Low level parcels
(which may be handled entirely by hardware) may contain simple memory re-
quests such as: “access the value X and return it to node K.” Higher level parcels
are more complicated and may take the form “resume execution of procedure Y
with the following partially computed result and return the answer to node L.”
Thus, it should be assumed that parcels can perform both communication and
computation, and may be invoked by the user, run-time system, or hardware.

90 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

4 Simulation Methodology

ANALYSIS ENGINE CODE

DATA REPORTING
CODE

SHADE

STATE OF USER
ANALYZED OBJECTS
(CACHES, PAGED
DATA, ETC.)

INSTRUCTION 1

INSTRUCTION N

INSTRUCTION STREAM

MACHINE STATE
(REGISTER FILE
CONTENTS,
CONDITION CODES,
STATUS OF
BRANCH
INSTRUCTIONS, ETC)

USER WRITTEN ANALYZER

OP CODE, REGISTERS USED,
TARGET (EFFECTIVE ADDRESS),
ANNULED STATUS, ETC.

INSTRUCTION INFORMATION:

MACHINE INFORMATION:
(PRIMARILY STATE)

Fig. 2. Shade Simulations

The principle benchmarking mechanism presented in this paper is the Shade
suite[24] developed by Sun Microsystems. This tool allows for the analysis of
any SPARC binary by providing a simple mechanism for examining the code’s
execution instruction by instruction. Figure 2 shows the simulation mechanism.
User written analysis code takes the running instruction stream and current
machine state to track the state of the processing and memory systems for a
PIM array. Of particular interest are memory events, such as opening a new row
or generating an off chip memory access.

Since the Shade suite traces SPARC instructions, the simulated ISA cor-
responds roughly to that of a typical RISC machine. This obviously does not
represent the vector ASAP ISA, however, this work is primarily concerned with
the performance of the memory system.

Shade does not provide a mechanism for tracing multi-threaded code, though
a package to do so is under development and will be incorporated into future
work. Consequently the instruction streams analyzed here are single threaded.
However, since they are taken from the program’s main loop of execution, they
are not atypical.

To allow the simulation to be tractable, input sets were restricted to the
100-500 MB range, as appropriate for the particular benchmark. Additionally,
simulation was limited to a 32-bit address space. Data sets were divided into

Data Intensive Memory Workloads on Distributed PIM Systems 91

three parts: code (as indicated by portions of memory subject to an instruction
fetch), the stack (which grows down from the top of the address space), and the
heap (everything else). For the purposes of data movement, only objects in the
heap were analyzed.

Many of the simulations, though consisting of smaller data sets, were per-
formed with an eye towards very large machines (consisting potentially of a
million or more nodes). Thus, large parcel sizes (for pages, code, state, etc.),
which can be handled by the extremely high bandwidth interconnection net-
works of such a machine, are not considered detrimental to performance. On the
other hand, broadcasts, updating many remote data structures, or overhead data
structures which envelop most of the memory on a given node are considered
detrimental to performance.

Of particular interest is the amount of time a given thread of execution can
continue on a node before an off node memory access is generated. Thus, the
execution model favors uninterrupted execution for long periods of time.

5 Metrics

There are primarily two metrics which will be presented throughout the rest of
this paper. The first, and simplest to understand, is the miss rate. It is, quite
simply, the fraction of accesses which cause a miss over the number of accesses
during the entire program execution. If A represents the total number of accesses
and M represents the total number of misses, the miss rate is merely M

A . This
is the traditional metric presented when examining the “efficiency” of caches.

However, since the measure of efficiency for the purposes of these experiments
is run length between misses (off node accesses), the more detailed Cumulative
Instruction Probability Density, or CIPD, is also presented. The CIPD is com-
puted by dividing a program’s execution up into streams of instructions for
which no miss is generated, given the memory state of the machine at the first
instruction in each stream. That is, the first instruction encountered which gen-
erates a miss constitutes the beginning of the next stream, which means that
the previous instruction is the end of the preceding stream.

Streams of the same length (in terms of number of instructions) are placed
into buckets. The probability that a randomly selected instruction stream will be
from a given bucket is then computed. If the CIPD is represented by the function
Ψ(L) where L is an instruction length, Ψ(L) will return the probability that an
instruction stream of length greater than or equal to L will be encountered.
Thus, for any program, Ψ(0) = 1, and if γ represents the maximum length of
any instruction stream, Ψ(γ + 1) = 0. Each of the CIPD graphs which follow
represent exactly the function Ψ(L) for each experiment. Ψ can also be used to
determine the probability that an instruction stream of length less than or equal
to L will be generated. This function, called Ψ∗(L) = 1 − Ψ(L).

It should be noted that the graphs are constructed from individual data
points determined during program execution. Since the Ψ always begins at 1
and eventually decays to 0, anything to the left of the beginning of the graph

92 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

(usually 103 instructions) will rapidly reach 1. Similarly, the “end-points” pre-
sented are not the true end-points (since they should always become 0); rather
they represent the probabilities of the largest instruction streams encountered.
Rather than presenting the entire function, these starting and ending points were
chosen to better represent the graph and include more information.

There is no notion of weight contained within the CIPD, which can be
thought of as “time spent executing.” Instruction streams of very long length will
show a relatively low CIPD, but could potentially represent the most significant
percentage of the overall execution time.

6 Working Set Critical Mass

Of primary concern in the construction of PIM systems is the ability of a PIM
to capture a significant working set to perform computation. Modern systems
represent working sets in two ways: as a cache or as a page space.

6.1 Caches

Four cache configurations were examined in detail using PIMs of 1, 2, 4, 8, 16 and
32 MB. The configurations were a 256-bit block direct mapped cache, a 2k-bit
block direct mapped cache, and 256-bit block 4-way and 8-way set associative
caches. (The choice of block size corresponds to assumptions regarding conve-
nient memory access discussed above.) For the purposes of these experiments,
only heap data was analyzed (that is, code references were ignored under the
assumption that code which is not self modifying can be duplicated across any
number of nodes, and stack references were ignored as the size of the active area
in the stack tends to be relatively small [18]).

Figure 3 show the typical cache result, in this case using the Method of
Moments benchmark. As can be seen from the miss rate, increasing the cache
size does not significantly impact the miss rate above cache sizes of 16 MB.
Further more, for the most effective configurations (the 256 bit block and 2 k-bit
block direct mapped), it does not effect it at all from the initial 1 MB size on.
This indicates that temporal locality is exhausted for these benchmarks with
a relatively small PIM size. (In this regard, the data management benchmark
fared the best, however its best configurations did not improve above 4 MB PIM
sizes.) Full simulation details can be found in [18].

Somewhat counter-intuitively, the set associative caches performed worse
than the direct mapped configurations. However, given that the caches are so
large (as are the block sizes), many sets in both of the set associative config-
urations remained unfilled. The low reuse of many of the benchmarks further
accentuated this outcome.

The increased spatial locality provided by paged memory spaces significantly
improved performance. The next section will demonstrate a 1-2 order of magni-
tude improvement in performance.

Data Intensive Memory Workloads on Distributed PIM Systems 93

0 5 10 15 20 25 30 35

0.2

0.22

0.24

0.26

0.28

Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Fig. 3. DIS Method of Moments Cache Size vs. Miss Rate

6.2 Paged Memory

Programmers tend to allocate even pointer-based data in a relatively uniform
fashion[23]. This accounts largely for the improvement in performance demon-
strated by paged memory configurations. Of primary concern here is the degree
to which larger pages are effective, given that on a PIM with a relatively small
physical address space, pages which are too large may not allow enough windows
into the address space to be effective.

Figure 4 from the DIS Data Management shows the miss rate versus the
number of pages on a given node for pages of various sizes (4 KB to 256 KB). The
key result given by this graph is that for all PIM sizes tested (1 MB to 32 MB)
increasing the page size uniformly improved the miss rate. This indicates that in
each case not only was the larger page able to provide additional spatial locality,
but having fewer windows into the overall address space did not adversely affect
the miss rate.

Obviously larger page sizes place a greater demand on the system’s inter-
connection network during a miss. However, it should be noted that the type
of system under examination is assumed to have a very high bandwidth inter-
connect (with a corresponding high latency for access). Additionally, due to the
enormous number of nodes – potentially O(106) – possible in such a system, it
makes sense to place a greater premium on directory services and the simplicity
of name translation than on page transmission time. Finally, no assumptions

94 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k

8k

16k
32k

64k

128k256k

Number of Pages

M
is

s
R

at
e

DIS Data Management −− Page Miss Rate −− Data Only

Fig. 4. DIS Data Management Overall Miss Rate

have been made in regard to the location of pages being retrieved (in another
area of physical memory, on disk, in a COMA arrangement, etc.), thus assigning
a “miss penalty” for the purposes of these experiments is largely irrelevant.

Table 1. Working Set CIPD Mean Values (256 KB pages)

PGM 2 MB 4 MB 8 MB 16 MB 32 MB
DM 10K 13.16M 13.16M 13.16M 13.16M
FF 200 300 600 1.03M 1.89M
MoM 5700 9.26M 2.62M 9.62M 9.62M
IU 632K 655K 9.26M 9.26M 9.26M
RAY 117K 202K 1.11M 1.11M 1.11M

Tables 1 and 2 show the mean and median values of the CIPD (Ψ(L)) for
each of the benchmarks. They show that relatively small PIMs (4 MB to 8 MB)
are highly effective in capturing a working set for most benchmarks. The FFT is
a highly unusual case in that 16 MB PIMs are of particular strength in capturing
the working set. This is not surprising, however, since the matrices involved are
O(15MB) in size.

Data Intensive Memory Workloads on Distributed PIM Systems 95

Table 2. Working Set CIPD Median Values (256 KB pages)

PGM 2 MB 4 MB 8 MB 16 MB 32 MB
DM 2K 20.55M 20.55M 20.55M 20.55M
FF 2K 2K 2K 1.54M 1.72M
MoM 18K 393K 393K 393K 393K
IU 601K 601K 1.53M 1.53M 1.53M
RAY 148K 149K 155K 155K 155K

7 Mobile Threads

Thus far it has been shown that an individual PIM is capable of holding a sig-
nificant workings set and that increasing the page size significantly improves run
lengths on a given node. Furthermore, system design thus far has emphasized
not only the long run lengths between remote accesses (due to the relatively
low latency of a local memory access versus a remote memory access), but also
simplicity in tracking the location of data. In extremely large systems, main-
taining a directory of highly fragmented data becomes complex both due to
synchronization and storage requirements[18].

Consequently, it becomes increasingly viable to move the computation in-
stead of the data in a mobile thread environment. This system, similar to Active
Messages[7], extends from the ability of a parcel to invoke computation on a
remote node. Under this model, a thread executes until a remote access is gen-
erated. At that time, the location of the remote names is determined, and the
thread is packaged into a parcel for transmission to the remote node. Upon
receipt, the remote node continues the thread’s execution.

There are several potential advantages to moving the computation:

– Page tables or other data structures managing the translation of names be-
come small.

– Static data placement significantly reduces the synchronization involved in
updating distributed versions of those structures.

– The physical location of a given computation need not be tracked at all.
Threads can freely roam the system without causing the update of compli-
cated, distributed data structures. Specifically, if various threads communi-
cate through shared memory, they need not know the physical node upon
which the thread with which they are communicating resides, only the loca-
tion of the shared memory.

– Programming models can emphasize moving to a given node, exhausting the
data present, and moving on. Simple mechanisms for delivering such data
can easily be provided by the runtime system.

– No round trip communication is necessary since the thread can move to
the data rather than requesting data which must then be returned. This
eliminated one high latency penalty upon each movement.

Naturally, there are potential problems with such an arrangement:

96 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

– Load balancing may be difficult, especially if data placement relies upon
highly shared data structures (that is, a given node could become a bottle-
neck if sufficient computation resources are unavailable).

– The runtime system must be capable of dealing with threads which have run
amuck.

– It may be impossible to group data such that related items are together.
(This experimentation, using benchmarks which are among the worst known
in this regard, indicates that this is really not a problem.)

It is impossible to address all of these problems in this paper, particularly
since this experimentation is still in the preliminary phase. Furthermore, the
single threaded model adopted for these experiments is incapable of examining
contention amongst several mobile threads.

The current model does, however, allow for the characterization of memory
access patterns generated by a single mobile thread. Since this single thread
represents the main loop of the program, its memory demands should be no
smaller than those of its children.

Given the potential difficulties of mobile thread execution, it is likely that
a hybrid model will be adopted. For example, data which is heavily shared but
not often modified could be duplicated amongst multiple nodes. Additionally,
it should be noted that each of the potential problems listed above also occurs
with systems which only move data.

7.1 Execution Model

Figure 5 shows the two potential types of mobile thread movement. In the first
form, each time a remote memory access is generated a thread is packaged and
moved to a new node. A slightly more complex model allows for the thread to
communicate with the node upon which it was previously executing in recogni-
tion of the fact that some data from that node is probably still necessary during
the computation. (This data can, in fact, be captured before the thread moves,
which alleviates the reverse communication.)

Data contained on the previous node, if available, is tracked as a “look-
back reference.” This represents, ideally, what could be packaged up with the
thread when it is moved so as to facilitate longer computation on the next node
without communication. Of particular interest is the number of unique references
to the previous node. Knowing this allows for the construction of data structures
to effectively capture such references, and provides a measure of feasibility for
mobile threads.

7.2 Data Layout

The experiments to be presented here allow for an extremely simplistic data
layout. Heap data is divided into chunks equivalent to a given PIM size, and is
held in place. Experimentation in [18] shows that the size of the active stack and

Data Intensive Memory Workloads on Distributed PIM Systems 97

NODE WHERE MISS OCCURS NODE TO WHICH THREAD MOVES

NODE WHERE MISS OCCURS NODE TO WHICH THREAD MOVES

THREAD

DATA NEEDED
BY THREAD

THREAD

THREAD WITHOUT PACKAGING
NEEDED DATA

THREAD WHICH PACKAGES
NEEDED DATA

THE SIZE OF THIS DATA WHICH MUST BE MOVED
EQUALS THE "LOOKBACK" SIZE.

Fig. 5. Types of Thread Movement

code sections is relatively small (with will over 99% of each being served by in
32 KB of information or less).

The Spartan nature of this data placement tends to yield worst case results. It
allows for no compiler, run-time, or user intervention in the policy for placement.
Data is merely divided according to PIM size and placed accordingly.

7.3 Run Length Experimentation

Figure 6 shows the impact of backwards references on run length and the overall
effectiveness of potential mobile thread computation. In this particular case (DIS
Data Management) the results are easiest to understand (and are fairly typical).
Because the data structure being traversed is a tree, the PIM size does not
significantly alter the run-length data. (The index tree is significantly larger
than even the largest PIM studied, therefore in eliminating half of the tree, the
thread is required to go to a different node regardless of PIM size.)

98 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DIS Data Management CIPD

Run Length

P
ro

ba
bi

lit
y

No Backward References
Backward References

Fig. 6. DIS Data Management Run Length Results (CIPD, Ψ(L))

Allowing for look-back references increased the maximum run length by ap-
proximately two orders of magnitude. Similarly, it increased the probability of
executing a longer run by nearly an order of magnitude.

Figure 7 shows the most dramatic results. For the Method of Moments code,
the maximum run length improved by over four orders of magnitude. Further-
more, not allowing for look-back references yielded particularly bad results – run
lengths of over 1,000 instructions occurred less than 0.0001% of the time.

The numerous short run lengths in this benchmark can be attributed to the
simplicity of the data placement scheme as related data structures are allocated
with very low locality. (Specifically, several big matrices are allocated one after
the other, and therefore reside on separate nodes.)

7.4 Look-Back Reference Results

Figures 8 and 9 show the probability density of a unique number of references to
the previous node being made for a given instruction stream. In every run, except
the Image Understanding benchmark, only 10 percent of instruction streams
reference more than 10 unique 32-bit words from the previous node, indicating
that a very small amount of data is needed to augment a thread once it has
moved.

Figure 10 shows the worst case results given by the Image Understanding
benchmark. The IU benchmark tended to thrash between the image it was look-

Data Intensive Memory Workloads on Distributed PIM Systems 99

10
3

10
4

10
−6

10
−5

CIPD Without "lookback" DIS Method of Moments

Run Length

P
ro

ba
bi

lit
y

2, 4, 8, 16, and 32 MB PIM

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

CIPD With "lookback" DIS Method of Moments

Run Length

P
ro

ba
bi

lit
y

2 MB

4, 8, 16, 32
MB

Fig. 7. DIS Method of Moments Results (CIPD, Ψ(L))

ing for and that which it was examining. This problem can be alleviated by
better data placement.

100 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

Fig. 8. DIS Data Management Look Back Reference Results

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB

8 MB

4, 8, 16 MB (left to right)

Fig. 9. DIS Method of Moments Look back Reference Results

Data Intensive Memory Workloads on Distributed PIM Systems 101

10
4

10
5

10
6

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB PIM

Fig. 10. DIS Image Understanding Look back Reference Results

8 Conclusions and Future Work

This paper examined the architectural parameters which effect program ex-
ecution on PIM arrays using the Data Intensive Benchmark suite. Because
these benchmarks exhibit complex, non-uniform memory request patterns, un-
derstanding their characteristics provides an ideal test-bed to flush out the ar-
chitectural parameters necessary to take advantage of extremely low latency
on-node memory accesses. Furthermore, by focusing on applications which have
proven themselves difficult for typical memory systems to accommodate, this
paper provides a set of “worst (realistic) case” memory access scenarios.

The paramount engineering problem upon which this work centered was the
determination of the physical parameters of the design of the memory system
(particularly how much physical memory a given node would need to sustain
significant computation, and how that memory can be logically organized). While
larger memories generally improved performance, it was shown that a relatively
small PIM (with a 2 to 8 MB memory macro, for example) can sustain significant
computation, and that, in fact, significantly larger PIMs were needed before
another order of magnitude increase in executions between misses occurred.

Surprisingly, the increased potential to exploit spatial locality provided by
large pages provided significant benefit in all the experimentation. Given that
the benchmarks exhibit highly non-linear stride during memory accesses (due
to pointer chasing or non-uniform matrix access), and each contained very large
data sets, this result, in which fewer windows into the address space are available,

102 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

took the experimentation in a different direction. Specifically, the number of
windows into the address space on each node was reduced to the minimum (one)
and the computation was allowed to move between nodes.

Generally, even given the simplistic data placement model, this mechanism
proved effective, especially when coupled with the ability to “look back” at the
previous node for data which may still be needed. After moving, the amount
of data used on the previous node tended to be quite small (on the order of
hundreds of bytes), implying that it can be effectively captured and packaged
before the thread is moved.

Future work in this area centers upon refining the mobile thread model. A
simulator capable of tracking multi-threaded versions of the DIS suite is currently
examining the issues of contention, scheduling and traffic. Furthermore, work to
define the data structures and hardware necessary to effectively capture look-
back references and accelerate the packaging, as well as efforts to define multi-
threading constructs capable of supporting inexpensive thread invocations and
context switches.

References

1. Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. The Tera System.

2. Atlantic Aerospace Electronics Corporation. Data-Intensive Systems Benchmark
Suite Analysis and Specification, 1.0 edition, June 1999.

3. Atlantic Aerospace Electronics Corporation. Data Intensive Systems Benchmark
Suite, http://www.aaec.com/projectweb/dis/, July 1999.

4. Jay B. Brockman, Peter M. Kogge, Vincent Freeh, Shannon K. Kuntz, and Thomas
Sterling. Microservers: A New Memory Semantics for Massively Parallel Comput-
ing. In ICS, 1999.

5. Doug Burger. System-Level Implications of Processor-Memory Integration. Pro-
ceedings of the 24th International Symposium on Computer Architecture, June,
1997.

6. Michael J. Carey, David J Dewitt, and Jeffery F. Naughton. The OO7 Benchmark.
In Proceedings of the 1993 ACM-SIGMOD Conference on the Management of Data,
1993.

7. David Culler, Kim Keeton, Cedric Krumbein, Lok Tin Liu, Alan Mainwaring, Rich
Martin, Steve Rodrigues, Kristin Wright, and Chad Yoshikawa. Generic Active
Message Interface Specification. February 1995.

8. B Dembart and E.L. Yip. A 3-d Fast Multipole Method for Electromagnetics with
Multiple Levels, December 1994.

9. M.A. Epton and B Dembart. Low Frequency Multipole Translation for the
Helmholtz Equation, August 1994.

10. M.A. Epton and B Dembart. Multipole Translation Theory for the 3-d Laplace and
Helmholtz Equations. SIAM Journal of Scientific Computing, 16(4), July 1995.

11. Guttman. R-Trees: a Dynamic Index Structure for Spatial Searching. In Proceed-
ings of ACM SIGMOID, June 1984.

12. J. M. Haile. Molecular Dynamics Simulation : Elementary Methods. John Wiley
& Sons, 1997.

Data Intensive Memory Workloads on Distributed PIM Systems 103

13. Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline Chame, Jeff Draper,
Jeff LaCoss, John Granacki, Apoorv Srivastava, William Athas, Jay Brockman,
Vincent Freeh, Joonseok Park, and Jaewook Shin. Mapping Irregular Applications
to DIVA, A PIM-based Data-Intensive Architecture. In Supercomputing, Portland,
OR, November 1999.

14. Peter M. Kogge, Jay B. Brockman, and Vincent Freeh. Processing-In-Memory
Based Systems: Performance Evaluation Considerations. In Workshop on Per-
formance Analysis and its Impact on Design held in conjunction with ISCA,
Barcelona, Spain, June 27-28, 1998.

15. Peter M. Kogge, Jay B. Brockman, and Vincent W. Freeh. PIM Architectures to
Support Petaflops Level Computation in the HTMT Machine. In 3rd International
Workshop on Innovative Architectures, Maui High Performance Computer Center,
Maui, HI, November 1-3, 1999.

16. Banks Kornacker. High-Concurrency Locking in R-Tree. In Proceedings of 21st
International Conference on Very Large Data Bases, September 1995.

17. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart mem-
ories: A modular reconfigurable architecture. ISCA, June 2000.

18. Richard C. Murphy. Design Parameters for Distributed PIM Memory Thesis. MS
CSE Thesis, University of Notre Dame, April 2000.

19. Notre Dame PIM Development Group. ASAP Principles of Operation, February
2000.

20. SPEC Open Systems Steering Committee. SPEC Run and Reporting Rules for
CPU95 Suites. September 11, 1994.

21. David Patterson, Thomans Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for
Intelligent DRAM: IRAM. IEEE Micro, April, 1997.

22. T. Sterling and L. Bergman. A design analysis of a hybrid technology multithreaded
architecture for petaflops scale computation. In International Conference on Su-
percomputing, Rhodes, Greece, June 20-25, 1999.

23. Artour Stoutchinin, José Nelson Amaral, Guang R. Gao, Jim Dehnert, and Suneel
Jain. Automatic Prefetching of Induction Pointers for Software Pipelining. CAPSL
Technical Memo, University of Deleware, November 1999.

24. Sun Microsystems. Introduction to Shade, June 1997.

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000 LNCS 2107, pp. 104–121, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Memory Management in a PIM-Based Architecture 105

106 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 107

108 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 109

110 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 111

112 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 113

114 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 115

116 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 117

118 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 119

120 Mary Hall and Craig Steele

Memory Management in a PIM-Based Architecture 121

Exploiting On-chip Memory Bandwidth
in the VIRAM Compiler

David Judd, Katherine Yelick, Christoforos Kozyrakis,
David Martin, and David Patterson

Computer Science Division
University of California �

Berkeley, CA 94720, USA
{dajudd,yelick,kozyraki,dmartin,pattrsn}@cs.berkeley.edu

http://iram.cs.berkeley.edu/

Abstract. Many architectural ideas that appear to be useful from a
hardware standpoint fail to achieve wide acceptance due to lack of com-
piler support. In this paper we explore the design of the VIRAM ar-
chitecture from the perspective of compiler writers, describing some of
the code generation problems that arise in VIRAM and their solutions
in the VIRAM compiler. VIRAM is a single chip system designed pri-
marily for multimedia. It combines vector processing with mixed logic
and DRAM to achieve high performance with relatively low energy, area,
and design complexity. The paper focuses on two aspects of the VIRAM
compiler and architecture. The first problem is to take advantage of the
on-chip bandwidth for memory-intensive applications, including those
with non-contiguous or unpredictable memory access patterns. The sec-
ond problem is to support that kinds of narrow data types that arise in
media processing, including processing of 8 and 16-bit data.

1 Introduction

Embedded processing in DRAM offers enormous potential for high memory
bandwidth without high energy consumption by avoiding the memory bus bot-
tlenecks of conventional multi-chip systems [FPC+97]. To exploit the memory
bandwidth without expensive control and issue logic, the IRAM project at U.C.
Berkeley is exploring the use of vector processing capabilities in a single-chip
system called VIRAM, designed for multimedia applications [PAC+97]. Studies
of hand-coded VIRAM benchmarks show that performance on a set of multi-
media kernels exceeds that of high-end DSPs and microprocessors with media-
extensions [Koz99,Tho00]. In this paper, we demonstrate that a vectorizing com-
piler is also capable of exploiting the vector instructions and memory bandwidth
in VIRAM.
� This work was supported in part by the Advanced Research Projects Agency of the

Department of Defense under contract DABT63-96-C-0056, by the California State
MICRO Program, and by the Department of Energy. The VIRAM compiler was
built using software provided by Cray, Inc.

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 122–134, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler 123

The technology for automatic vectorization is well understood within the
realm of scientific applications and supercomputers. The VIRAM project lever-
ages that compiler technology with some key differences that stem from dif-
ferences in the application space of interest and in the hardware design: the
VIRAM processor is designed for multimedia benchmarks and with a primary
focus on power and energy rather than high performance. There is some overlap
between the algorithms used in multimedia and scientific computing, e.g., matrix
multiplication and FFTs are important in both domains. However, multimedia
applications tend to have shorter vectors, and a more limited dynamic range for
the numerical values, which permits the use of single-precision floating-point as
well as integer and fixed-point operations on narrow data types, such as 8, 16,
or 32 bit values. VIRAM has features to support both narrow data types and
short vectors.

2 Overview of the VIRAM Architecture

2.1 The Instruction Set

The VIRAM instruction set architecture (ISA) [Mar99] extends the MIPS ISA
with vector instructions. It includes integer and floating-point arithmetic oper-
ations, as well as memory operations for sequential, strided, and indexed (scat-
ter/gather) access patterns. The ISA specifies 32 vector registers, each containing
multiple vector elements. Each vector instruction defines a set of operand vectors
stored in the vector register file, a vector length, and an operation to be applied
element-wise to the vector operands. Logically, the operation described by an
instruction may be performed on all the vector elements in parallel. Therefore,
we use the abstract notion of a virtual processor in which there is one simple
processor per vector element that executes the operation specified by each vector
instruction.

The maximum number of elements per vector register is determined by two
factors: the total number of bits in a register and the width of the elements on
which operations are being performed. For example, in the VIRAM processor a
vector register holds 2K bits, which corresponds to 32 64-bit elements, 64 32-
bit elements, or 128 16-bit elements. The VIRAM ISA supports arithmetic and
memory operations on these three data widths. The bit width of the elements is
known as the virtual processor width (VPW) and may be set by the application
software and changed as different data types are used in the application.

Apart from narrow data types, multimedia applications frequently use fixed-
point and saturated arithmetic. Fixed-point arithmetic allows decimal calcula-
tions within narrow integer formats, while saturation reduces the error intro-
duced by overflow in signal processing algorithms. The VIRAM architecture
supports both features with a set of vector fixed-point add, multiply, and fused
multiply-add instructions. Programmable scaling of the multiplication result and
four rounding modes are used to support arbitrary fixed-point number formats.
The width of the input and output data for multiply-add are the same for these
operations, hence all operands for this instruction can be stored in regular vector

124 David Judd et al.

registers. There is no need for extended precision registers or accumulators, and
this simplifies the use of these instructions. The maximum precision of calcula-
tions can be set by selecting the proper virtual processor width.

To enable efficient vectorization of conditional statements, the ISA includes
a vector flag register file with 32 registers. Each register consists of a bit vector
with one bit per vector element, which may be applied as a mask to the majority
of vector operations. The same flag registers are used to support arithmetic
exceptions, as well as software-controlled speculation of both load and arithmetic
operations.

2.2 The VIRAM Processor

DRAM 1

 5Kc Core C
P

 I
F

DRAM 0

(2MB) (2MB)

DRAM 7

(2MB)
. . .JTAG

SYSAD IF

JTAG IF

TM

DMA

MIPS64

Instr. Cache
 (8KB)

 (8KB)
Data Cache

FPU

Memory Unit TLB

Vector Register File (8KB)

Arith Unit 1Arith Unit 0

Flag Register File (512 B)

Flag Unit 0 Flag Unit 1

Memory Crossbar

Fig. 1. The Block Diagram of the VIRAM Processor.

The VIRAM processor chip is an implementation of the VIRAM architecture
designed at U.C. Berkeley [KGM+00]. Its block diagram is presented in Figure
1. It includes a simple in-order (scalar) MIPS processor with first level caches
and floating-point unit, a DMA engine for off-chip access, an embedded DRAM
memory system, and a vector unit which is managed as a co-processor. Both the
vector and scalar processors are designed to run at 200 MHz using a 1.2V power
supply, with a power target of 2 Watts [Koz99].

The vector unit of the VIRAM processor includes one floating-point and
two integer arithmetic units. Each arithmetic unit contains a 256-bit datapath,
which can be used to execute 4 64-bit operations, 8 32-bit operations, or 16 16-bit
operations simultaneously. Thus, the virtual processors that one may imagine

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler 125

acting on an entire vector register are implemented in practise by a smaller
set of vector lanes, which execute a vector operation by computing a subset of
the elements in parallel in each clock cycle. With 256 bits datapath width, the
vector unit has 4 64-bit lanes, which can be viewed as 8 32-bit lanes or (for
integer operations) 16 16-bit lanes.The ISA allows for 32 and 64-bit floating-
point as well as 8, 16, 32, and 64-bit integer operations. The VIRAM processor
supports only 32-bit floating-point and 16-, 32-, and 64-bit integer operations.1

VIRAM’s peak performance is 1.6 GFLOPS for 32-bit floating-point, 3.2 GOPS
for 32-bit integer operations, and 6.4 GOPS for 16-bit integer operations.

The vector unit uses a simple, single-issue, in-order pipeline structure for
predictable performance. The combination of pipelined instruction startup and
chaining, the vector equivalent of operand forwarding, enables high performance
even with short vectors. To avoid large load-use delays due to the latency of
DRAM memory, the worst-case latency of a on-chip DRAM access is included
in the pipeline and the execution of arithmetic operations is delayed by a few
pipeline stages. This hides the latency of accessing DRAM memory for most
common code cases.

There are 16 MBytes of on-chip DRAM in the VIRAM processor. They are
organized in 8 independent banks, each with a 256-bit synchronous interface. A
DRAM bank can service one sequential access every 6.5ns or one random access
every 25ns. The on-chip memory is directly accessible from both the scalar and
vector instructions using a crossbar interconnect structure with peak bandwidth
of 12 GBytes/s. Instruction and data caches are used for scalar accesses, while
references from the vector unit are served directly by the DRAM macros. The
memory unit in the vector coprocessor can exchange 256 bits per cycle with the
DRAM macros for sequential accesses, or up to four vector elements per cycle
for strided and indexed accesses. It also includes a multi-ported TLB for virtual
memory support.

3 Compiler Overview

The VIRAM compiler is based on the Cray vectorizing compiler, which has C,
C++ and Fortran front-ends and is used on Cray’s supercomputers. In addi-
tion to vectorization, the compiler performs standard optimizations including
constant propagation and folding, common subexpression elimination, in-lining,
and a large variety of loop transformations such as loop fusion and interchange.
It also performs outer loop vectorization, which is especially useful for extract-
ing large degrees of parallelism across images in certain multimedia applications.
Pointer analysis in C and C++ are beyond the scope of this paper, so we use
the Cray compiler strategy of requiring “restrict” pointers on array arguments
to indicate they are unaliased.

1 The fused multiply-add instructions in the VIRAM ISA are implemented in the VI-
RAM processor for fixed-point operations but not floating-point. These instructions
are not targeted by the compiler and will therefore not be considered here.

126 David Judd et al.

The strategy in this project was to re-use as much compiler technology as
possible, innovating only where necessary to support the VIRAM ISA. The Cray
compiler has multiple machines targets, including vector machines like the Cray
C90 and parallel machines like the T3E, but it did not support the MIPS archi-
tecture, so our first step was to build a MIPS back-end for scalar code and then
a VIRAM code generator for vectorized code. Differences in VIRAM and Cray
vector architectures lead to more interesting differences:

1. VIRAM supports narrow data types (8, 16, and 32 bits as well as 64 bits).
Cray vector machines support 32 and 64 bit types, but, historically, the
hardware ran 32-bit operations at the same speed as 64-bit, so there was
no motivation to optimize for narrower types. In VIRAM using narrow data
types leads to higher peak performance, as each 64-bit datapath can execute
multiple narrower operations in parallel.

2. In both Cray and VIRAM architectures, conditional execution is supported
by allowing a vector instruction to be computed with a set of flags (or masks)
that effectively turns off the virtual processors at those positions. VIRAM
treats flags as 1-bit vector registers, while the Cray machines treat them as
64 or 128-bit scalar values.

3. VIRAM has special support for fixed-point arithmetic, saturation and vari-
ous rounding modes for integer operations, which are not provided on Cray
machines.

4. VIRAM allows for speculative execution of vector arithmetic and load in-
structions, which is particularly important for vectorizing loops with condi-
tions for breaking out of the loop, e.g., when a value has been found.

This list highlights the differences in the architectures as they affect compila-
tion. In this paper we focus mainly on the first of these issues, i.e., generation of
code for narrow data widths, which is critical to the use of vector processing for
media processing. The last two features, fixed-point computations and specula-
tive execution, have no special support in our compiler, and while the flag model
resulted in somewhat simpler code generation for VIRAM, the difference is not
fundamental. In VIRAM the vector length register implicitly controls the set of
active flag values, whereas the Cray compiler must correctly handle trailing flag
bits that are beyond the current vector length.

4 On-chip Memory Bandwidth

The conventional wisdom is that vector processing is only appropriate for sci-
entific computing applications on high-end machines that are expensive in part
because of their SRAM-based, high bandwidth, memory systems. By placing
DRAM and logic on a single chip, VIRAM demonstrates that vector processing
can also be used for application domains that demand lower cost hardware. In
this section, we use a set of different implementations of the dense matrix-vector
multiplication (MVM) benchmark to explore the question of how well VIRAM
supports memory-intensive applications. Although MVM is a simple compila-
tion problem, it does not perform well on conventional microprocessors due to

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler 127

 dot saxpy saxpy−padded column
0

200

400

600

800

1000

1200

1400

1600

1800

M
F

LO
P

S

1 lane
2 lanes
4 lanes
8 lanes

Fig. 2. Performance of 64×64 Single-precision Floating-point Matrix-Vector Multipli-
cation on the VIRAM Processor.

the high memory bandwidth requirements. There are only two floating-point
operations per matrix element.

When the matrix uses a row-major layout, matrix vector multiplication can
either be organized as a set of dot products on the rows of the matrix or a set of
saxpy’s on the columns of the matrix. The dot products have an advantage in
using unit stride access (sequential) to the matrix, while saxpy’s require strided
accesses. Strided and indexed vector accesses are slower than unit stride, because
they can only fetch four elements per cycle, regardless of the virtual processing
width. A unit stride load can always fetch 256 bits per cycle, which is eight 32-
bit elements for example. In addition, strided and indexed accesses may cause
DRAM bank conflicts which stall the vector unit pipeline. On the other hand,
the dot product involves a reduction that is less efficient, because it involves
operations on short vectors near the end of the reduction. For very long vectors,
the final stages of the reduction are amortized over more efficient full vector
operations, so the impact on efficiency is negligible.

Figure 2 shows the performance in MFLOPS of single-precision floating-point
matrix vector multiplication routine on a 64×64 matrix. The numbers are taken
for the VIRAM processor implementation by varying the number of 64-bit lanes
from 1 to 8. Our performance results are produced using a simulator that gives
a cycle-accurate model of the VIRAM vector unit. The first of these groups is
a dot-product implementation using unit stride. Not surprisingly, with only 64
elements per vector, efficiency is somewhat low due the percentage of time spent
on reductions of short vectors. The second version shows a saxpy implementation,

128 David Judd et al.

where the accesses to the matrix are the stride of the matrix dimension (64). If
one pads the array with an extra element, giving it a prime stride of 65, that
reduces memory bank conflicts, resulting in the third group of numbers. Finally,
if we use a column-major layout for the matrix, a saxpy implementation can be
used with unit stride, which produces the best performance. We note that while
is may be attractive to consider only using the column-based layout, another
common kernels used in multimedia application is vector-matrix multiplication,
which has exactly the opposite design constraints, so a row layout is preferred
there.

As indicated by this data, an 8-lane vector unit does not perform well with
only 8 banks. Even with 4 lanes there are significant advantages to having more
banks for the saxpy implementations with the row-major matrix layout. More
DRAM banks reduce the likelihood of bank conflicts for strided memory accesses.
A similar effect can be achieved by organizing the existing banks in a hierarchical
fashion with sub-banks, which would allow overlapping of random accesses to a
single bank [Y+97]. Unfortunately, hierarchical DRAM bank technology was not
available to us for the VIRAM processor, but we expect it to be available in the
next generation of embedded DRAM technology.

 VIRAM Sun Ultra I Sun Ultra II MIPS R12K Alpha 21264 PPPC 604e Power3 630
0

50

100

150

200

250

300

350

400

M
F

LO
P

S

Fig. 3. Performance of 100 × 100 Double-precision Floating-point Matrix-Vector Mul-
tiplication.

Nevertheless, the performance is impressive even for the 4-lane, 8 bank VI-
RAM design when compared to conventional microprocessors with higher clock
rates, higher energy requirements, more total area per microprocessor, and many

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler 129

more chips in the system for caches and main memory. Figure 3 presents the per-
formance of the hand-coded vendor implementation of 100×100 double-precision
MVM as reported in the LAPACK manual for a set of high performance server
and workstation processors [ABB+99]. A column-major layout is used with all
of them. The VIRAM processor does not support double-precision operations
on its floating-point datapaths because they are of no practical use for multime-
dia applications. Still, we were able to calculate the performance of a four lane
VIRAM processor with support for double-precision using a simulator.

From the six other processors, only the hand-coded Alpha 21264 outperforms
compiled code on VIRAM by merely 6%. The rest of the processors perform
1.3 to 15 times worse, despite their sophisticated pipelines and SRAM based
cache memory systems. Note that for larger matrices VIRAM outperforms all
these processors by larger factors. The performance of server and workstation
processors is reduced for larger matrices as they no longer fit in their first level
caches. On the other hand, the vector unit of VIRAM accesses DRAM directly
and incurs no slow-down due to caching effects, regardless of the size of the
matrix. In addition, multiplication of larger matrices leads to operations on
longer vectors, which amortize better the performance cost of the final stages
for reduction operations in the saxpy implementation. Hence, the performance
of the VIRAM processor actually increases with the size of the matrix.

5 Narrow Data Types

One of the novel aspects of the VIRAM ISA is the notion of variable width data
which the compiler controls by setting the virtual processor width (VPW). The
compiler analyzes each vectorizable loop nest to determine the widest data width
needed by vector operations in the loop and then sets the VPW to that width.
The compiler uses static type information from the variable declaration rather
than a more aggressive, but also more fragile, variable width analysis [SBA00].

The process of computing the VPW is done with multiple passes over a
loop nest. On the first pass, the VPW is assumed to be 64 bits, and the loop
nest is analyzed to determine whether it is vectorizable. At the same time, the
widest data type used within the loop is tracked. If the maximum data width
is determined to be narrower than 64 bits, vectorization is re-run on the loop
nest with the given estimate of VPW (32 or 16 bits). The reason for the second
pass is that narrowing the data width increases the maximum available vector
length, and therefore allows more loops to be executed as a single sequence of
vector instructions without the strip-mining loop overhead.

The above strategy works well for 32-bit data types (either integer or floating-
point) but does not work well for 16 bits in standard C. The reason is that the C
language semantics require that, even if variables are declared as 8-bit characters
or 16-bit shorts, most operations must be performed as if they were in 32 bits.
To enforce these semantics, the compiler front-end introduces type casts rather
aggressively, making it difficult to recover information about narrower types in
code generation. Our initial experiments found that only the most trivial of

130 David Judd et al.

loops, such as an array initialize, would run at a width narrower than 32 bits.
As a result, we introduced a compiler flag to force the width to 16 bits; the
compiler will detect certain obvious errors such as the use of floating-point in 16
bit mode, but trusts the programmer for the bit-width of integer operations.

colorspace compose convolve detect decrypt
0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
O

P
S

1 lane
2 lanes
4 lanes
8 lanes

Fig. 4. Performance of Integer Media Kernels on VIRAM.

Figures 4 and 5 shows the performance of several media processing kernels
on a VIRAM configuration with 16 memory banks and varying numbers of 64-bit
lanes from 1 to 8. Figure 4 presents integer benchmarks taken from the UTDSP
benchmark suite [LS98], while Figure 5 includes single-precision floating-point
kernels.

– colors (colorspace conversion) is a simple image processing kernels that
converts from the RGB to the YUV format. It reads and writes 8-bit data
and operates internally on it as 16-bit data. Strided memory operations are
convenient for selecting pixels of the same color that are interleaved in RGB
format in the image. Loads of 8-bit data while the VPW is set to 16 bits,
fetches each 8-bit value into a single 16-bit vector element, without any
shuffling or expanding of data needed.

– compose (image composition) is similar to colors in the data types, but can
be performed using unit stride memory accesses only.

– convlv is an image convolution, which like colorspace performs a 16-bit
integer computation on images stored in RGB format using strided memory
accesses. Each output pixel is computed by multiplying and summing the

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler 131

matmul 64x64 saxpy 4K fir filter
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
F

LO
P

S

1 lane
2 lanes
4 lanes
8 lanes

Fig. 5. Performance of Single-Precision Floating-point Media Kernels on VIRAM.

pixels in a 3x3 region. The source code contains 4 nested loops, and it is
critical that the compiler vectorize an outer loop to obtain reasonable vector
lengths. By default, the compiler merges the middle two loops and vector-
izes them while unrolling the innermost one. The performance shown here
improves on that default strategy by unrolling the two inner loops in source
code, while the compiler vectorizes the 2nd loop that goes over rows of the
image.

– detect is an edge detection algorithm for images and decrypt performs
IDEA decryption. Both of these use a mixture of 16-bit and 32-bit integer
operations.

– FIR is an FIR filter, saxpy1 and saxpy2 are, respectively, 64 element and
1024 element saxpy’s. Matmul is a 64x64 matrix multiplication. All of these
use 32-bit floating-point computations.

Although hand-optimized VIRAM code is not available for all of these ker-
nels in this form, two floating-point kernels are available and are quite close in
performance. The hand-coded performance numbers for a 4-lane configuration
with 8 memory banks are: 720 MFLOPS for saxpy2 and 1,580 MFLOPS for
matmul. Note that the performance in both cases depends on the size of the
input data. The two versions of saxpy are included to show how performance
improves with longer application level arrays, because they better amortize the
time it takes to fill and drain the long vector pipeline at the beginning and at
the end of the kernel. This shows again an advantage VIRAM for computations
that operate on large images or matrices. VIRAM does not depend on caches,

132 David Judd et al.

hence it performance often increases rather than decreases with increased data
size.

The performance of kernels with 16-bit operations is limited primarily by the
number of elements that can be fetched per cycle for non-unit stride accesses. The
VIRAM processor fetches one element per lane for indexed and strided accesses,
while a 64-bit lane can execute 4 16-bit arithmetic operation simultaneously. This
mismatch exists due to the high area, power, and complexity cost of generating,
translating, and resolving for bank conflicts more than one address per lane
per cycle for strided and indexed accesses. Unit stride accesses, due to their
sequential nature, can fetch multiple elements with a single address for all lanes.
Bank conflicts are also responsible for some performance degradation.

6 Related Work

The most closely related compiler effort to ours is the vectorizing compiler
project at the University of Toronto, although it does not target a mixed logic
and DRAM design [LS98]. Compilers for the SIMD microprocessor extensions
are also related. For example, Larsen and Amarsinghe present a compiler that
uses Superword Level Parallelism (SLP) for these machines; SLP is identical to
vectorization for many loops, although it may also discover vectorization across
statements, which typically occurs if a loop has been manually unrolled.

Several aspects of the VIRAM ISA design make code generation simpler
than with the SIMD extensions [PW96,Phi98]. First, the VIRAM instructions
are independent of the datapath width, since the compiler generates instructions
for the full vector length, and the hardware is responsible for breaking this into
datapath size chunks. This simplifies the compilation model and avoids the need
to recompile if the number of lanes changes between generations. Indeed, all of
the performance numbers below use a single executable when varying the number
of lanes. Second, VIRAM has powerful addressing modes such as strided and
indexed loads and stores that eliminate the need for packing and unpacking. For
example, if an image is stored using 8-bits per pixel per color, and the colors are
interleaved in the image, then a simple array expression like a[3*i+j] in the
source code will result in a strided vector load instruction from the compiler.

7 Conclusions

This paper demonstrates that the performance advantages of VIRAM with vec-
tor processing do not require hand-optimized code, but are obtainable by ex-
tending the vector compilation model to multiple data widths. Although some
programmer-control over narrow data types was required, the programming
model is still easy to understand and use. VIRAM performs well and demon-
strates scaling across varying numbers of lanes, which is useful for obtaining
designs with lower power and area needs or for high performance designs appro-
priate for a future generations of chip technology. The compiler demonstrates
good performance overall, and is often competitive with hand-coded benchmarks

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler 133

for floating-pointer kernels. The availability of high memory bandwidth on-chip
makes a 2 Watt VIRAM chip competitive with modern microprocessors for
bandwidth-intensive computations. Moreover, the VIRAM instruction set of-
fers an elegant compilation target, while the VIRAM implementation allows for
scaling of computation and memory bandwidth across generations through the
addition of vector lanes and memory banks.

Acknowledgments

The authors would like to thank the other members of the VIRAM group and
Corinna Lee’s group at the University of Toronto who provided the UTDSP
benchmarks. We are also very grateful for the support provided by the Cray,
Inc. compiler group in helping us use and modify their compiler. IBM Micro-
electronics provided the manufacturing technology for the VIRAM processor,
while MIPS Technologies designed the MIPS processor it includes. Avanti Corp.
provided the CAD tools used for the design.

References

ABB+99. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorenson.
LAPACK Users’ Guide: Third Edition. SIAM, 1999.

FPC+97. R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, D. Pat-
terson, T. Anderson, and K. Yelick. The energy efficiency of IRAM ar-
chitectures. In the 24th Annual International Symposium on Computer
Architecture, pages 327–337, Denver, CO, June 1997.

KGM+00. C.E. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope,
D. Jones, D. Patterson, and D. Yelick. VIRAM: A Media-oriented Vector
Processor with Embedded DRAM. In the Conference Record of the 12th
Hot Chips Symposium, Palo Alto, CA, August 2000.

Koz99. Christoforos Kozyrakis. A media-enhanced vector architecture for embed-
ded memory systems. Technical Report UCB//CSD-99-1059, University of
California, Berkeley, July 1999.

LS98. C.G. Lee and M.G. Stoodley. Simple vector microprocessors for multimedia
applications. In 31st Annual International Symposium on Microarchitecture,
December 1998.

Mar99. D. Martin. Vector Extensions to the MIPS-IV Instruction Set Architecture.
Computer Science Division, University of California at Berkeley, January
1999.

PAC+97. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A case for Intelligent DRAM:
IRAM. IEEE Micro, 17(2):34–44, April 1997.

Phi98. M. Phillip. A second generation SIMD microprocessor architecture. In
Proceedings of the Hot Chips X Symposium, August 1998.

PW96. A. Peleg and U. Weiser. MMX technology extension to the intel architec-
ture. IEEE Micro, 16(4):42–50, August 1996.

134 David Judd et al.

SBA00. M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with ap-
plication to silicon compilation. In Proceedings of the SIGPLAN conference
on Programming Language Design and Implementation, Vancouver, British
Columbia, June 2000.

Tho00. Randi Thomas. An architectural performance study of the fast fourier
transform on VIRAM. Technical Report UCB//CSD-99-1106, University
of California, Berkeley, June 2000.

Y+97. T. Yamauchi et al. The hierarchical multi-bank DRAM: a high-performance
architecture for memory integrated with processors. In the Proceedings of
the 17th Conf. on Advanced Research in VLSI, Ann Arbor, MI, Sep 1997.

���������	
 �������� ��� ��������

�������� ��������� ���� �������

����� ������ 	
����� 	������ �� ������� ��� ����� ������������

� ���������	
� ������������

��������� �� �
������ ������������

�������� � �����

����������	
����	��

� ����������� ���������
� �����
�
�	�

�
��
�	 �
� �
������ !�������

�� ������ � ���"#

�����������������	���	��

��������

���� ����� ���������
�� �
�� �� ��
�����
� ���������� � ������
�� �
� ��!
����� �
������ ��������� ���� �������� ��������� ����������� ��� ���!���
�"
��� ����� �
���
���� �������� ���� � �
������ ������� ���!���� ���� ����������
������� ���������
�� ��� ���!������ ���� ���
�� ��� ��#���
�
� ��� ����!����"
���
 ���������" �
���
���� �������
��� ���
�� ��� �������
�
� ����� ���� ����� ���
����
��
� �����" ���
�����#� ��������� ��� ��� �������
�
� #���
�� �����������
�
������
� � ��� ��
���� ������

��������� ��#������ �
�����!���� ������ ���
�����
� �
 �������#��" #��������
���
�"� �
 ��������� �����!��� ��������� ��� �
 ����� ��� �����������
� �
�!
 ������ ����� ������ �
� ��� ���������
�� ������� ��� ��������� �
������ ����!
��$��� ��������� �� �#����� �
�� ���� %&'
� ��� �����!��� �

����� ��������
��� ����
��
� �����" ���
�����#� ������� �������� (#�� ����
�� ��" ��������
����
��� ��������� ���
������
��)��� �������� ������ �" ����
#��� �������
�*����#������ ����������� ������� �
� ����� ��� ����������� ��� ����� �
�����
�
������ �" �������� ������� ��� �����"
� ��������� �� ���� ��� �
�� ������$���
�
��� �� ��������� ���� ������
��� �
������ ������$��� ���+
� �������� ���!
�
�� ,����� ������� ���������
��- �
 �

� ���

�������� ���� ������� �� ����� ����
�� �
�!�
���� ����!���� �"������ ��� ����!����
������ ����
��
����
���

� �������	�
��

��#���� ������ ��
.��� ��
�
���� �
���
� ������ ������� �
 ���
�" ���
������
�� ���
�" ���
����� ����� ��������� ��� �
�� ���
����� �
�������� �� �
����!
��� ��#����� �� ������� �
 �
���!�
�������
�� ����
������� ��� ����
�������
/01� 2������
� ������" �������� ��$��������� �
�
������ �������� ����� ��
.����
��������
� ���
�" �"����� ���� ��� ���
�)�������
�
��������� �
 �
��
������� 3

� ������� �� ����� 	��
���� /41 ���� �����������" ���� ��������!
����� ���� ��*����� ���
�" ��$��������� �
 � �
�!��#�� �
������� ������� ���

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 135–146, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

136 Csaba Andras Moritz, Matthew I. Frank, and Saman Amarasinghe

�������� ��	
 ������ ��� �������� ������ ������� �� ��������� � ���������
�� ��	
 ������� ��� �������� ��� ��	
 ������ ������� !��
�! ��"
������ �#$� %������ ������� �� �������� ���������� �� ������� ��"������ �����
"��� ��������� �� ������&� ��� ���%������� �% ������ �������� !�� '��(�	

������ �)� ����� ����������� ������ �� ��� ��	
 �� �� ������� �� ������ ����
��� ������� %�� ������ ����� ������������ �� ��������� ���������� ��� ��	

�� ��� ���� ���� !�� 	����� *���� ������ �+� ���%�� �������������� ������������
�� ��� ������ ������ �� ��������� '*,	� "��� ��	
 	 ��" ����"��� �����
�� ���"� �� �-� ���� ������� ��� .�	
 ������� ���� ������� ���������� ��� ��� ��
�� ���%���� ��/��0 �������� ���������� ������0 �� ������ ��/�� !��� ������ ��
���"� �� ����1� ����� ������������ "��� �� �� 2$3 ���%������� �����������
������� .����� *��������� ���� �� ��� !�(�� ����������� !
.42$56277 �����
����"��� ������� �� ��� .�	
 ���� ������� �� ���� ����� ��� ���� ������
!� ���� "��� ��� ���� ��	
 ��������� �� %����� ��������������� � %���� �����
������� ��������� ����� "��� ��%�"��� �����������8������� �� ��������� �� �4� 	
��%�"��� ����������� ��������� �� ���"� �� ������� ��������� ���������� %���
-3 �� -)3 �������� �� � 9�"�� :�;

!��� ����� ��������� '��(5����0 � %����"��� %�� <�(����0 �������� ���������
���� ������� '��(5���� ����� ��� <�(������� �% ��� ����� ��������� ������
������� ��� ���� %������ ������� �% �������� ���� ������������ ������� ������
��������0 '��(5���� ������ ���� � <�(���� ��%�"��� ����%��� "��� ��� �����������
�% ������ ����"��� ��������� �� ������ =���"��� ������� ��� �� ����� �� %���
�% ��" ������������ �� ������ ��� �������� �% ��� ��%�"��� �������0 ��� "������
�������� ��� <�(������� ��� ��������������� ��������

'��(5���� ����������� ��� ���������� ��� ��� ����� ���������� "��� � ����
����� ������� �������� ���� ���������0 ������� �����������0 ��� ���������� ��
����"� ��� �������� �% ��� ���������� ���� ���������� ���������� ����������0 ���
��������� �% ����� ���� ��&��0 ��� ������� �% ������ ����������� ��������0 ���
��� ��������� �% ������� ����������� �������� ������� '��(5���� ��������� ������
��%�������� ��������� ������ �����������0 �� ��� ������� ������� �Æ������ ����
����� �� ������������ ������ >���������� ��� ����"��� %�� �������� ����������
��� ��������� ������ ������ �� %��� .�	
 ��� ���� ������%� ��� �������� ��� ���
���� ������ �������� '��(5���� ������������ ��" �������� ������?��� ������
=�� *����0 ������%���� ����������� ����������0 ������ �������� ��� ������ �%
������ ����������� ������ !�� '��(5���� �������� �� ��/����� %��� ���� �����
�������� ������� ���� ����� �������� ������&������ �� �������� ��� ������ �%
������ ������� �� ��� �����(� �% ������������ ����"��� ������

'��(5���� ���� %��� ���� ������?��� �� ��� ���� �������������� �� ������
��������� ������ ��� ��� ���� '����0 �� ��� ����� ������� "��� ��� ���������
�� ������� @�� ������� ����A ���� ������ �������� �������� ���� %��� .�	

������ >(����� �% ���� �������� ��� �������� ������ ���� �����"��� ������� ������
��� ��� ����� �����1���� ���%������� ����������� �2� .�����0 �� ���� %�� ���
1��� ���� �������� ������?��� ������� �� ������ ������� �������� �� ������%� ���
������������� ����� ���������� ���������� ����� �������� �� ������� �� ��� ��%��
"��� �������������� ���� ������&����� ������� ��� ��%�"��� �������� %�� ��� ���

FlexCache: A Framework for Flexible Compiler Generated Data Caching 137

Reconfigurability

Compiler managed
hit−case overhead reduction

Compiler Managed

User Defined

Runtime Defined

Compiler managed miss−case

o. Pointer analysis

o. Hot Pages analysis

o. Adaptive Strip Mining

o. Other: Data reuse & occupancy analysis

o. Partition types
 (i.e. system area,
 non−mapped, register spills,
 statically predictable area,
 mapped areas)

o. Cache−line sizes

o. Partition sizes

o. Associativity

o. Replacement techniques

o. Address translation

Hardware support

o. Hybrid: combine with hardware cache control

o. Dedicated Hot Page registers

o. Special memory instructions:
 speculative Hot Page check = speculative
 load/store & check HP register, trap if misspredicted

o. Other special instructions:
 access SRAM directly, tag−check on/off, ...

o. ILP exploited in superscalars

o. Replacement policies leveraging static
 information

o. Prefetching

���� �� �������� �� 	
� ������
� ���������� ������
� ��� ������� �������� �����

����� ���� ����	� �� ���	��� �������� ��� ���
� ��������	��� �����	���� ��� ��������

	��
������ ��� ������� 	� �� ��� ���	���� ����
�� � �� ���	���� ������ ���
���� 	�

������ 	
� ��������� �Æ����	��� �� 	� �������	� 	����
����� !�� ���� ������	 ���

�� � � �� ���� �� ��� �������	��� ������ ���	���	����� ����	 ������ 	� 	
� ���
�

 �	�������� �� �� ���� �� � ���	� !�	 "��� �����	���� # �	�������� � ������
�

�������� 	� ���������	�
�� ���� ���
�����	��� ����� ��� 	
� �����	� 	�
�� �� ����

������ �������� �� ������	����� �������

���� �� ���	
���	���
��� ��	 ��� �
� � ��	� ������	�
���������
�� 	���
��
�� � �
����
���� �	������	��
���������� �� ��� ����
��
���
�� �� ��� ����	�
��
����
�� ��	������ ��� ���	
���	���
�� ���	���� ��� �� 	������ �� ���
���	���
�
��� �� ���
��
���� �	������	�� ��� ��� �� �������� �
�
����� �
�� ����
�
����	���
�� ��� �	��
�����	� ����� ������
���� ��
	�� ��	 ����� �		�� ��������
��� ������ ���� �������� ��	��
����� �� 	����� ��� �����	 �� ��� ���� � �	��
���� ��	 ����	� ������ �� ���� ��	 �����
��� !
���� ��� !��"���� ������
���� ��� ���	 �� ����� ������
�� �
#�� �����
��
�
�� ��� 	��������� ��
�� ��	
���� �	��	��� 	����
�� ��� �
�� 	����

���
�
��� ����
�	 �����
$��� ���� �� �������� �� �������� ��� �����
��
�� ����� ��	�����	�� ��
� ����	 ��
�� ������� ��
����
��
�� ��� �	
�
�� ������

138 Csaba Andras Moritz, Matthew I. Frank, and Saman Amarasinghe

����� �� ��� �	�
���� ������ ��� 	����� ��� ��� ����	�� ��������� ��������
�� �������� ��� ����������� ��	����� �������

�� �������� �� ��� �	�
���� ��������� �� ��������� �� ������ �� � �	�
�
���� ����� ��� �� ������ ����	�� ���	���� ���� ����� �� ������� ����	�
��� ��� ������	 ��� ����������� ��	������ �	�
���� ����������� ��� ���
��	�� ��������� �� ����� �������� ��������� �� �������� ������� ����� ��
������ ��� �������� �Æ����	� !���� �� 	��������� ����	�� ����	���� �� ��
������ ���	������ ����� ���	������ ��	����" ��� �� �	������� ��� ����
����� #������� ������� �� �� ����� �� ���� �� ��� ����	����� ������
����������� ����� ���� �� ��� ��� ���������� ������� ��� ���� �� ��$���
��� ���� �� ������ ���������� ��� �� ���� �� �������� #�� %��� ����������
���������		� �	�
���� �������� �� ���������� �������� ���������	 �� �
������ ��� ��	����� ��������� ��� ���	��� �� ����	� ���� ������ ������ ��
����������	 ��� !���� ���� ������ �� �� � �������� ���"�

&�� ���	������� ����	�� ����������� ���� ����	� ���� ���	���� �� �	�������
� 	���� ������� !'() �� ������� ��� ��� ���	������� �������" �� ��� �������
	������� *��� ������� ��� �������� ������� �	�
���� �� ���������� �
��
�������� ���� �� ��������� ����� �$��������� �	��������� ������� ���
+��� ��� �	��������� ��� ��� ��		����� ����� �� �������� ���		�� ,����� �		
��� ���� �	�
���� �������� ��� �������� ����� � �	�
���� ��	����� �� ���	��
����� ����� ��� �� �� ����	� ���������� �� ���� �� ��$����� ������ ������
��� �� 	�� ����� ���������� ���� ���������� �� ���� ���������	��� �� ����
��� ������� �	�
���� �� �	�� �� ��� ����� ��	����� �� ��� ���� ����� ���
�%-� ����� ������� �� �� �� ����������� �� � ��	��� ����	����� ������ ���
�� �������� �� .�/�

0�� ��������� �� ���� ����� �� ������1�� �� ��		���� 2����� 3 ��� 4 ��������
��� ��������� �� ��� �	�
���� ������� 2����� 5 �������� ����������� ���
�������� �������� 2����� 6 ����� ��� ���	������� �
���������	 ����	��� 2����� 7
��	���� ��� ������

� �������	�
����� �����

0��� ����� ������� �� ���������� ���� � 	��	 28�9 ������ ��� �� �
�����	
	���� :8�9� ������� �����	����� �� ��� ������� �� ������� ��������� ����
28�9 ���������� 0��� ������� �� �� ���	������� �� ����� � ���	� 	�����
����	�� �� ��� ���� ���	� 	����� ���� �� ������	 ������ �������� 0�� �������
�� ���� �� � ���� �����	������ � 	��� �� � ��������� ������� ����� �� ���� 28�9
��� ������� ������� *�� �����	����� ���	� ����� ������� ���� � ��� ��� �
�����	����� �� � ������	 28�9 ��������

0�� �����	����� �������� �� ���� �� �������� ������ ��� ��$����� ���	� �����
��1������ ��� �������� �� ������� !�" �	�	����� ��� 	��� ������ ���� ���
������� ������� !3" �	�	����� �� ������� ���� ��� �����	����� ���	� ����� ��
��� 	��� ������ !4" 	������ ��� ��� !5" �������� ��� 	��� ������ ���� ���
��� !6" �	�	����� ��� �$��� ������ ��� 	��� !7" 	������ ��� �����	����� !;" �	�
�	����� ��� ����	 ������	 28�9 ������� ���� ��� �����	����� ��� �$��� !<"

FlexCache: A Framework for Flexible Compiler Generated Data Caching 139

�������� ����	
� �� ���� ���� ����� �����	��	� ����	
� ����� ��� ���	�
����	�� ���� ������� �
� ��� ������� ����� ��� � !���"�� ���� ��
���
�
� ����� ����	� ���	�� ����"�� �� ������ ��� �� �� "��� ��� ���� #�$%
������� 	
 � �	
�� ����� ���	�
 & ����	�� ��� ����	�� ���	�	'��	�
� �� ��
��� �� ����"�� ������� (� !��)��� ���	�	'��	�
 �	�	
��� ���� �% &
�
� *� +�� ,�
�	�
� 	����
�	
� �� ���	
	
� �����	�
� ����� �	�	
��
��� �� ���	
	
� ������% "�	� ��	
� �	��%
�� ����	
� �� -,	�	�	�� �� ��
����	�� ���� �����	�
�

.�
 �� /�,0��� ����� ����� � ���� �	�� ��� ����"�� ��������
��	�� 	� 	
���� � �	�� ��
���� (���
��	� ���� �������
� �� !��)���
�������	
� 	�
�	1� �� ��� ���	
� ����	���	� ��
�
��������� �
� ��
	�
��� ���	
� ������
�� +
 �� �	��� ����� ���� ��� 	� �
�� �
 �	

���� ��
 � ������� +� " ��� ��� ���� ������� ��	� ���� " ���
� ����
���	�
 ��� �� ����� ��� 	
 ��� �� � ��
-	�� �	����	�
� !�"��% " ��
 ���
�
 ��	
�� �
����	� �� �����
� ����
�
 ��� ��� ������ "	��
�� ����� �	
�
���� ����
��� ��� �� ��� ���� �
� ������ " ��
 ��� �� ����	
� �� ���
���� ����	� �� ��	
 ����	
� ����� (�	� 	������ �� �	����� �� ���� �	
�
���	��� ����	����� �� � ��� ��
 �
�� � ������ "	�� ���� �����	� ��� �	
��

�� �� ��� ��"
 ������	
� ���� �
� ,��
�� 2��� ���
�	� 	� ���	���
"	�
	
�% "	�� 2��� ���
�	� ����	
� ������
�� �� ������	
� �����% ��
�
��	
� ���� �	��� 	
 ����"�� ����� � ���	�� ���������

� �������	� �
�����

(���	�	�
����% �� ����	�� �
���� ��� �����	
� 	
1
	� ������ (� ����
�	�� �����

� �� �� /�,0��� ����� ����� ��	� �������	�
 �� 	����
��
	
� ����	
� 	
 ����"��� /	��� � ���"� �� -�" �� �� ����
�� /�,0���
����	�� "�	�� 	
����� ��
" ����� ���	�� ��� ����	
��

(�	� ���	�
 ������� ����	�� �� ����	�� �����

�� �� �� /�,0��� ����
��� /	���% 	� ����	�� ��	
�� �
����	�% �
 �
����	� ���
	�� ��� �� ����	

�� �����	�
 �� �	�� �� ��� ����� ���
�� 3,�% 	� ����	�� �� !��)��
�
����	� ���� "�	�� �	�	�� ����� ���
�� 	
�� ������ ����� ��� ���� �����
��� ���
�� 	
�	� � ��� ��� �� "	�� �� �� ��� ��	��� �������� ���
����
�	�
% ����� � ��� ����% �
 	������
� ������ �����	�
 ���	�	'��	�
� /	��� &
	
������� �
 ,���� "�	�� 	��������� �� ���� �� ����	�� ������� ��� �����
"�� ��
��� ����	
��
������� ��	
����

)�	
�� �
����	� 	� � ����	�� �
����	� "�	�� 1
�� � ��
�����	� ��	���	�

��� �� �� �� ���� ��4��� ���� � ����� ���
� ��
 ��� ��� (� �
����	� 	�
��
�����	� 	
 ���� ��� ��4��� 	
 �� �� ���
�� � ���
��� 5
 ���
����
����	���	�
 �� ��	
�� �
����	� 	� �� ����	
 ��
�
� ��"
 ����� ���
�
��� +
 ��� /�,0��� �����% �� �
����	� 	� ��� �� ��	� �� �����
� ��
���� �
� ��� �� ��� ��� ���	�	'��	�
� (�� �� ��
� ���	�
�� �� ��	
�� �
���
��	� �����	����% ���� ��	
�� �	6� 	
 �� ���	�	�
 �� "�	�� ����� ���
��
�� �	����	������ (� /�,0��� ����� 	� ���� �
 � ���� ���	� ��� ��

140 Csaba Andras Moritz, Matthew I. Frank, and Saman Amarasinghe

Traditional Compiler Optimizations

Pointer Analysis

Hot Page Analysis

Virtualization

Code Generation

Hot Pages Optimizations

Binary

(C, Fortran)

Caching related
techniques

Cache
Parameters

Specialization &
Inlining of Hot Page
checks

���� �� ��������� �� �	�
�����	� �������

������� ���	
��� ���� �� ��� ������������� ������ ����� ������	���� ���� ��������
��� ����������������� ������ 	������� ���� ��
 ����� ���� �� ��		��� ���������

�������� ��� �	�� ���� �������� �� ��� ��!���� ���� �
�� �" ��������� "��
����������� �" ���������� 	��� ������� �� "����� ������� ���	
��� ������!��� ���	�
���� ��� ����� ������� ���� �������� 	��� ������ ���������� �������
 "�� �����
��������� #����	� ���� ��� ������� ���	
��� ���� ��� � "���� �� $%%� %&'�

��� ���� �	�
���

(�� ���)��� ���	
��� ���� 	�������� ��� ��"�������� ��������
 ��� �������
���	
��� ���� �� ��������� ��� 	������� ��� �" �		 �����
 ��������� (�� �*������
�" ��� ���	
��� �� �� ������"
 �" � ������������
 ��"������ ��� ����� � ��������	

�����	���� ������	 ���� ������������

+�� ������!�� 	�������� ������ ��"�������� ���� ��� 	���	��
 �" ���������
�� ���	����� � "��� ������� �����	������ (�� �����	�� ������ �����
 ��������
���� ������ ��		�� ��� ���� ����� ��� ���� ���� ��� ���������� ���� �� �����
	������� ���� ���"�������� �����
 ������� ���	
���� �� �����
� ,��� ��� ����
��� �������� ��"������� ���� ��� 	���	
 ����� ��� ������� �����	����� ����� "�� �
�����-� �����
 	��� ��		�� � ��� �����

(�� �����	�� �	������� ��� ��� ������� ������ �� -��� ���� �*���� ���� ��
����
� ��� ���������� ��� ���� ����� �*���� �� ��� ���� ����� (���� �� ���������
��� ������	���� ����� �" ��� ������� ��� ���� �����
 �������� �� �������� ���
���� ���� ���� �� ����� 	������� ����� ��� �����	�� �" ��� �����	�� ����������

FlexCache: A Framework for Flexible Compiler Generated Data Caching 141

int A[10000];
int B[10000];

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=*pB++;
A[j]=temp;
}
}

int A[10000];
int B[10000];

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=*pB++;
A[j]=temp;
}
}

pointer analysis hot page analysisoriginal code virtualization

int A[10000];
int B[10000];

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=CheckLoad(pB++, hp1);
CheckStore(&A[j], hp2)=temp;
}
}

int A[10000]; //hp2
int B[10000]; //hp1

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=*pB++; //hp1
A[j]=temp; //hp2
}
}

���� �� �� ������� 	
 �	� �������� ���������� �	
����� ������� �� ��� �	������� ���
�	����� �������� �� ���� �	 ��������� ��� �	����	� ���� 	
 ���	�� ��
��������
	� �������
�� ��� ��� ���� ��� �� �� ��� ��� ��� ���	
 �������� ���	����� ���	�� ��
������� ���	
�	� ���� ���� ��� ���� ��� ��� �������������� ���� ������� ��� ���	�� ��
������� ����
��	������ ������ ��� ������� ���������	�
�	����������� ���� �� ��� �	������ ��� !���
�������
�	������	� �	��
	� ��	������ ��	������	� ���� ��������"���	� �� �	���	���� ��
��� �	� ���� ��� ���	����	�� #����� ��� �����

���� ��� ��	
���� �� ������
���� ��
�
 ��
� �
		����
 ��	
���� ����
 ����
���
��

���	
��� ��
�
��
�� ���� �� 	
� �������� ���� ���
���� ��
��
����

��� ��� ��� ��� �
�� ��
����� �� ��
�
��
�� ���� ��
� ����
� ��	
���� ��
	
� �� ���
� ���
�� �����

�
	� ��� �
�� �
 ��� ���	� �� ������
����
����� �� ��
 �����
� ����
������ ���� �
��
��
 ����	
� ��
��� ����
��� ���� �������� ! �		����
��
��
���� ���� �������
 ��� �
�� ������� ����
�� ���� " 	�	�� �� ������
�
��
 ���� ����
�� ���������
���� ��� 	�	�� �� �#��
	� ��� ���� ������ ���� ���

����� ��� 	�	�� �� 	���
�� �� ��� �
� ����� �� ��� �� ��� �������� ��� 	�	��
�� �#��
	� ��� ���� �$�� ���� ��� �����
�
�����
��
 %�
� 	�	�� ��
�� ���
�$�� �� ��� ��
��
��� &'!(
���� ���� �� ��� �� ���� ��	
� ��������)��
��#� �	���� ���� ���
�������
� ��	���*�� �
�� ��
�	����	���
� �#������
��
� ������
�� ��� " 	�	�� ������
��

+� ��� ��� �
�� �
� 	��	� �
��� ����
 ���	����� 	
�� � �
�� �� ��� �����
����
�� ������� �
� 	��	� �������� ���	� �
��
���� ,- 	�	�� �� ��� �����
!�����
�������
 ������ ���� ����� ���� �� ��� �
���
�� 	
	�� 	��	� �� 	
�
�� �������	��� ��� �
��
		��

! ��������� �
������ ��� ��� �
�� 	��	� ����� 	���� �� ���� �� �� ������
������� ��� ��� �
�� 	��	� �� ��� �����	���� �� �� ��� ���	����

)�� 	������� ��������� ���	�
		�� ����� �� 	
	��� �� ��� �����
��.
�
���� ��
�� +�
�
		� � �����
��.�� ���� �� � ��������� ����
 ���	����� 	
���
)�� 	������� 	
� ��	��� ��� �� �����
��.�
�
		�
�� �
� �� ����	��� ��
�
���
���� ������� �� &'!(�)���
		��
�� ��	
�
�� ���� 	�� / 	�	�� ������

 �
�
 �
����
 �
���
�� 	
	����)�� 	������� �
� 	
�
� ������� ���� ��
���
��
� 0
���� �
	� �
���� ��1�	�
�� �
����� ������� ��� ����
�� 	
	����
���� ��
���� ������
���� ��� ���
���� ������� �� &'!(�

)��
���� ��
��
���� ��� ��� �
�� �������	� � 	�����.��
� 	�����������
��� ��� ��	�%	 ��� �
�� �
�� ��	������� ���
��
������ �� �#��
 �
��� ������

142 Csaba Andras Moritz, Matthew I. Frank, and Saman Amarasinghe

SW: On Single-issue processor
Input regs:
 vir_addr, hp_vp, hp_pp

1. srl vir_page, vir_addr, BITS
2. andi offset, vir_addr, MASK
3. bne vir_page,hp_vp, AddrTr
4. addu sram_addr, offset, hp_pp
5. lw results, 0(sram_addr)

On Superscalar - ILP
Input regs:
 vir_addr, hp_vp, hp_pp

1. srl vir_page, vir_addr, BITS 1. andi offset, vir_addr, MASK
2. bne vir_page,hp_vp, AddrTr 2. addu sram_addr, offset, hp_pp

 3. lw results, 0(sram_addr)

Dedicated ISA
Input regs:
 vir_addr, hp_index(hp_vp, hp_pp)

1. hplw results, vir_addr, hp_index

���� �� ����� �������	
������ ��
�����	�	���� �� ��	 ����� ����� ����� � ���� ����

����	� �� ���� � ���� ��	� � ����	����� ���	�� 	���� �������� �� ������!�����
�� �������

"� � ��
��� ����
�� ����� 	��� �������� �� ���� �� 	� 	�� ���	�� 	���
�� ���� � ����

�� 	�� �#� �� 	�� �� $ ���� %�	� 	�� ��� �&	������ 	�� �������� �� ��
��	��'

�������	���

������ ���	�����
���� �
���
��� ���
���� ����������
�� �������� �Æ	���	�
�������� �� ��� �����
�� ��	������� ��
������� ��
 ����	
�� �
���	� �����
� ��
��
� �� 	���������
� �
���
�� �
��� ���������
������ ��
 ������ �������� ��
	
� ��� �
���
�� 	
	�� �
�������� ��� ������
		����� ��
�
�� ��� �����	�
���
��
�
���
���
� 	����������� ��� ������
		����� ��
�
�� ����������
�� �
��
��
�
������ ��
���� �� ��	�
		�����
�� ����
Æ��
��
�
		�����
�� �������	��
�� 	������ �
�
 ����	����� ���� ��������� !��� �����	�
��� �������	��
�� ��
��
���� ���� 	������� �
�
 �� ������
��
� �� �����
�� 	
	��� ����
����

�	����	���
� ��������

� ��������	
�

"� ����������� ��� #���$
	�� ������ ��
 ��� �������� % ��
 � �������� ��	���
���	����� �����
� �� !�&' ()***� + ��� ����� ������ ����
�	�� �
��� ��
 ��	
�
'(+!
��
� �,�	��� -(+! �� �����
���� + ��	
� ���	��� '(+! ������ ��
��
�
	��� �� ��� ���	������ + �
� � ������
� (-(+! ������ �� ��	���
�� �� �����
�
� � �������� ��
� ��	��� ��� ���� �� ��� ���	��� ������� .�� �����������
��
��������� ��
 	�	�������� �����
����

"� �
�� ����� ��
� ��� #���$
	�� ������ �
�
�
���
 � ���
��	 ������

		��� �����	���� �
�� �� /*0 ��� ���
����	
����� ������� ���� .
��� 1� ������
�
��� ��� ���� �� 	
	����
 ���2��� ���
������ ��
���
������ �� ���� 	
����

.�� #���$
	�� ������ �� ����� 	�������
��� ��
� 	
� ����3� �
��
����	
�
������ +����	
����� �
�� ���� ��,����� ������������ ��
� ����� 	
���� �� ���

FlexCache: A Framework for Flexible Compiler Generated Data Caching 143

• OB = # of bits in offset of hotpage vir_addr = log2(cache line size)
• µ = 000…..1111 , where # of 1’s = OB
• hp_pp is the hotpage register containing the SRAM frame
• hp_vp is the hotpage register containing the virtual page

IF

ID/RF

WB

MEM

EXEC

Opcode rd rs hp_index

register file hotpage registers

hp_vp hp_pp

hp_pp offset

>> hp_vp
rs (vir_addr)

SRAM

maskvir_page

phy_addr

rd

 OB

µ

31 26 21 16 2 0

EN

8

=

hplw result_reg, vir_addr_reg, hp_index

exception

���� �� ��������� �� ��	 ����
������
��� ���	 ���� ��	 ��	�����
�	 ���	��
�� �� ��	

����	 ��� �	 ���	 �
�� �
�
��� �����	 ������� ��	 ������	� 	�
��	� �����
�
��

��	 ������	� �������
��� �	 ��	� �� 	���	 	�
��	 �	���	� � �
���	�
��
��
�

�����	� �� �� 	��	��
�� ���
�
� �	�	��	� 	���
� ��	 ��	���
�� ����	 �� ��	 ���	���

�
�	�
�	�

������� �� 	
��� �	��	� �	����� ������� �� ����� � �� ���� ��� 	�����	�
����� ���� ��� ������� �	�������� ����������� ��������� ����� �	� 	� ����
	� ����

�� ����� �� ���� ��	� ��� ��!��	� ������ 	�����	���� ������ �	� �����
��	�� �	�� ���"��� ������ ��	� 	� ������� �� ��� ����� �	���� �	��� #���
�	�� ���� 	
��� ����� �	���� �	��	� �	����� ������$ ����#	��� �	� ���
���� ��� 	�����	������ %����$ &��	��� �� �� ��!��	� �	�	���' ���� ������� (��
#���������� ���	� �� ���� ����� !	��� ���� ��� ��!��	� ����#	��� ������
����	�� �� 	 ������ ����� 	
��� ����� �	���� �	��	� �	����

� �������	���
�� ����� ����

(��� �	�� �������� ����#	���$!	����) !� "���&��$ ������� �	�	���
�	�	 �	������

�� ��� 	�����	����� ������� ��� ����#	��� ���������� ������	�� �� 	��	��
��� ��	� *�� �! ��� �	�����	� ���)���$ ��	&���� ��� ������ �! ������ 	����
��	���� �	����� ������� ����� �������� !��� "���&������ +� �	�� ����� ��	� ����

144 Csaba Andras Moritz, Matthew I. Frank, and Saman Amarasinghe

����������	
���� ���� ������ ���������� � ��������

������ ����� ��� ����

��� ���� �� ���!

�����"# ��!!� !��� ���

$�% ���& �! ���

����#	 �!��!� ��! � ����

����� ����� !�� ����

'�� �!��� ���! ����

(�	�� & & ���� &&��

����) !���� ��!�& �!��

����� �� *��	��+ �% ��+,���"� -���	������	 ���� ���".��/ �������� 0��� �� 1��
*�+� ���	�2. �	 �)������ �#����
� ����� ���	��+ �% ��+ ���"� ����	��� ��
���.���# ��+�� ���.� � ���+ ������	 �% ����# ������ .� �� ����� ����" ������#�

Median-filter Convolution

SW direct mapped
cache

HW Cache

SW column-
associative cache

SW fully mapped
cache

Infinite memory

�	
� ��
� 3�� �% ���� ���������4��# %�� ���+���� 0��� ��	# ��	5��� ������ 6���
���0	 �� 	�������� �� �� ��.���	 ��� �% �� ��%�0�� ����� ����� ����)��
��� ���+���7 �� ����7 �%� �� ��+�� �������	� �� -�/ � ��%�0��)������ 0��� �����
�����	+7 �������� 0��� 1�� *�+�7 �	� ��& 0��� ����,��	�7 -�/ � ����0�� �����
����� ���� 0��� �� 0��� -0��� ��& 0��� ��� �� ��%����	� �� 0���8/ ����,��	�7
-�/ � ��%�0��)������ 0��� �,0�# ���.�	,���������4 �����	+7 �������� 0��� 1��
*�+�7 �	� ��& 0��� ����,��	�7 -!/ � ��%�0��)������ 0��� %.��# ����� ����7
�������� 0��� 1�� *�+� �	� ��& 0��� ���� ��	�7 �	� -�/ �	 ���� ����#�

FlexCache: A Framework for Flexible Compiler Generated Data Caching 145

Different performance trends

0

10000000

20000000

30000000

40000000

50000000

32 128 256 512

Cache line size

R
u

n
ti

m
e

M
ed

ia
n

0

100000

200000

300000

400000

500000

600000

R
u

n
ti

m
e

S
O

R

Median SOR

���� �� �������� ���� 	�
�	 ��� ������ �� �������� �������	� ������� �� ��� �������
����� ��� ��� �������	 ���� � 	������ ������ �� �	��� !���" ����� �		� ����#�
������� ��� ������
�� ���� $�� %���	� ������������ ���	 ������ ���� 	������ � ��
����	 ����� ��� ��� ������� ���	 ������ ���� � ������ ���� 	�
��

������� ��	 ��
���
� ����
�� � ��������� ���� 	��� ��� �����
��
� ����

��
���
� ����� �	 ���
����� ������� �����������

�� �
� ��

����	 ��
���� �� ���������� ��� ��
���
� ����
� �� � �	�
��

���������� ��� �� �������� ��������
 �������� ������� ����� ���� �����

 �� ������ �� ��� ����� ����
���� �� ��� �������
� ��� ���� ��� ���������

������!�� ��� �� ��� ��
����� �����

�	 ������

����������

&� '� (���) �� ������) �� *� �����
) �� ����+) ,� -��) �� (����) ��� �� *����	�
������ � .� ������������	
���������� ��� �������) /���) �*) *���� &000� .111
�������� �� ���"�

!� 2� �� ������ ��� 3� '� $��#�"� ������������������� �����"� .� ���������	� �� ��
�� ����������� ���������� ��
���������� ������ ��� ���	������	 ���	��	��
��� �������	 ������) ����	 !4&&) ��� '�	�) �*) � �� 546 &007�

5� �� 2� �� 1��+ 8� $������� * ����" *		� ����#� ��������������� �� �� ��	����
.� ���������	� �� �� ���
����� ����������� ��������� �� �������
�����
�����) 9�� ��#��) '��� !:::� .111 �������� �� ���"�

;� �� �����) �� %�����	��) 2� *	���#�) *� (����) '� 8����) (� 8���	���) 2� 2���
���) �� 2�
"��+�) �� ������) �� %���		�+�) �� 3����) /� 3������) 2� <��� +)
3� *����	��) ��� 2� ,���
"��+� .���������� �*� =.�*�>� .� ��
 ������!

���"
�#�� .111 �������� �� ���") �������� &007�

?� <� 2���) ,� $����) ����� <��) �� 2���) @� 8�) 9� -��) %� %������+) ��� '� 3���
����	� �����*�A 3����� �� *�#�� �� .���������� �����" �"	���� .� ���������	�
�� ����������� ���������� �� ������� "���	� $���"%) � � &000�

146 Csaba Andras Moritz, Matthew I. Frank, and Saman Amarasinghe

�� �� ���� �� 	��
��� � ����
���� �� ��� �� �� ������ ��� �� ��������� �����

�������
� � ��� ��� ��!��"# ��$�� ��!%���!� ��� &� ���������	
 �� �� ��� ���

���� ������������� �����
��� �� �������� ������������ '��!� (��� � ��)***�

&+++ ,��- ��� ��!�����

.� �� /
���� 0� �� ,%��#� ��� �� �%������� �!��(� 	�#�
� � ,��- ������ ����� 1��

&������#��� ������� &� ���������	
 �� �� ��� ������ ������������� �����
���

�� �������� ������������ 2��!������ � �� 3445� &+++ ,��- ��� ��!�����

5� � 	� �� 	���%�
����%� ���#����%��� ������ ��(�� ��!��"# ��$�� ,�!%�
 ���

�%��� �--��!����� �� ����� 	��!�

��#� &� ���������	
 �� �� ��� ������ ���

����������� �����
��� �� �������� ������������ '��!� (��� � ��)***� &+++

,��- ��� ��!�����

4� �� 	�����
��� �� �����

��� � ,�������� �� 0����� �� ������� ��� ,� �� ����

� ,�
� 1�� &������#��� ���� &���� �� ���� ������ �-��� 344.�

3*� �� �� ��6��(2�� �� ������ 7��� ��-
� � ,��-����8����#�� ������ ��
��� 1��

��� ��!%���
� &� ���������	
 �� �� ��� ������ ������������� �����
��� ��

�������� ������������ �������� � �� 3444� &+++ ,��- ��� ��!�����

33� �� � #��� ��� �� ������� 	������ �����
�
 1�� � ����%������ 	��#���
� &�

���������	
 �� �� ���� �! "## ���������� �� ���	��� ��	��	� $�
�	� ���

��������������� �������� ��� 3444�

3)� �� 	� ���
�� ��� �� �� 7��� +Æ!���� ,����9�8���
���(� 	������ �����
�
 1�� ,

	��#���
� &� ���������	
 �� �� ��� ���� �! "#� ���������� �� ���	������	

 ��	��	� $�
�	� ��� ��������������� -�#�
 3:3)� 7� ������ ,�� � �� 35:)3� 344;�

Aggressive Memory-Aware Compilation*
Peter Grun

pgrun@cecs.uci.edu
Nikil Dutt

dutt@cecs.uci.edu
Alex Nicolau

nicolau @cecs.uci.edu

Center for Embedded Computer Systems
University of California, Irvine, CA 92697-3425, USA

h ttp:t/ www.cecs , u c i .edttraces

Abstract

Memory delays represent a major bottle,eck in embedded systems performance. Newer
memory modMes exhibiting e~cient access modes (e.g., page-, burst-mode) partly nlle-

viate this bottleneck. However, such features cannot be efficiently exploited in processor-

based embedded systems without memory-aware compiler support. We describe a memory-
aware compiler approach that exploits such efficient memory access ,nodes by extract-
ing accurate timing information~ allowing the compiler’s scheduler to perform global
code reordering to better hide the latency of memory operations. Moreover, we present

a compiler technique which in the presence of caches actively manages cache misses,

and performs global miss tmff~ optimizatfons, to better hide the latency of the mem-
ory operations. Our memory-aware compiler scheduled several benchmarks on the Tf

C6201 processor architecture interfaced with a 2-bank synchronous DRAM and gen-

erated average improvements of 24% in the presence of efficient access modes, and

61,6% improvement M the presence of caches, over the best possible acttedule using a

traditional (memory-transparent) optimizing compiler, demonstrating the utility of our
memory-aware compilation approach.

1 Introduction

The memory subsystem is one of the key performance and power bottlenecks in

emerging architectures" as the gap widens between processors and memories, long
memory latencics hinder processor performance, while simultaneously dissipating more

power. Advances in memory technology and memory architectures partially alleviate

this problem, for instance through new generations of memories such as SDRAM, and

RAM-BUS that exhibit efficient access modes (e.g., page-, burst-, and pipelined-accesz

mode), However, these newer memory families still have to be accessed through some
form of caching in order to deliver sustained performance, Previous work in optimiz-

ing compilers and cache architectures have focused on improving cache performance

through exploitation of program locality, program scheduling to hide iatencies of cache

misses, etc. However, such techniques have traditionally assumed a fairly generic model

*This work was partially supported by ~r~B from NSF (MIF-9708067), DARPA (F33615-00-C-
1632) and a M a n i l a fellowship.

F,T, ChonE, C, Ko~yrakis, and M, Oskln (gds.): IMS 2000 LNCS 2107~ pp. 147-15 I~ ~I.
(~ Spring~r-V~rl~g Berlin }teidelberg 2001

mailto:pgrun@cecs.uci.edu
mailto:dutt@cecs.uci.edu
mailto:nicolau@cecs.uci.edu
http://www.cecs.uci.edu/~aces

of the background memories being accessed. While these newer memory families are
designed with special, performance- enhancing access modes, even the most aggressive
traditional optimizing compilers are unable to fully exploit such features. Our memory-
aware compilation approach explicitly models and captures detailed timing characteris-
tics of newer memory families, and exploits this timing information to further improve
processor performance and provide opportunities for power management.

In our approach, we capture the memory access protocols for each memory com-
ponent through a detailed and accurate timing model for the different memory access
modes of a memory component. Using this timing information, our compiler techniques
arc able lo belier match the characteristics of the memory sub-system with the specific
processor architecture, leading to significant improvements in performance. Tradition-
ally, these access modes were transparent 10 the processor, and were exploited implicitly
by the memory controller (e.g., whenever a memory access referenced an element al-
ready in the DRAM's row buffer, it avoided the row-decode step, fetching it directly
from the row buffer). However, since ihe memory controller only has access to local
information, il is unable to perform more global optimizations (such as global code re-
ordering to belter exploit special memory access modes). Our approach provides the
compiler with a more accurate timing model for the specific memory access modes,
and thus allows our compiler to perform global optimizations that aggressively hide the
latency of the memory operations. Moreover, due lo the ubiquity of caches in today's
architeclures, optimizing ihe memory accesses in the presence of caches is crucial. In
the presence of caches, the accurate timing information allows our compiler to explicitly
manage cache miss traffic, generating better performance through the hiding of cache
miss latencies.

Our memory-aware compilation approach exploits detailed memory timing informa-
tion, providing an opportunity to perform global compiler optimizations. First, we ex-
tract accurate memory timing from an architectural description of the processor/memory
system in the EXPRESSION Architectural Description Language (ADL). Then, we use
this detailed memory timing information to efficiently exploit the features of the mem-
ory modules, such as page-mode and burst-mode accesses, pipelining and parallelism.
Additionally, in cache-based architectures we further improve performance through ex-
plicit management of cache miss traffic.

The key idea in our approach is the notion of combining detailed timing of the mem-
ory modules (e.g., efficient memory access modes) with the processor pipeline timings
to generate accurate operation timings. We then use these exact operation timings to
belter schedule ihe application, and hide the latency of the memory operations. Proces-
sors traditionally rely on a memory controller lo synchronize and utilize specific access
modes of memory modules (e.g., freeze the pipeline when a long delay from a memory
read is encountered). However, the memory controller only has a local view of the (al-
ready scheduled) code being executed. In the absence of an accurate timing model, the
best the compiler can do is to schedule optimistically, assuming ihe fastest access time

148 Peter Grun, Nikil Dutt, and Alex Nicolau

(e.g., page mode, or a hit in the presence of a cache), and rely on the memory controller
to account for longer delays, often resulting in performance penalty. This optimistic
approach can be significantly improved by integrating an accurate liming model into the
compiler. In our approach, we provide a detailed memory timing model to the compiler
so that it can better utilize efficient access modes through global code analysis and op-
timizations, and help the memory subsystem produce even better performance. We use
these accurate operation timings in our retargetable compiler to better hide the latency
of the memory operations, and obtain further performance improvements.

Moreover, in the absence of dynamic data hazard detection (e.g., in VLIW proces-
sors), these operation timings are required to insure correct behavior: the compiler uses
them to insert NOPs in the schedule to avoid data hazards. In the absence of a de-
tailed timing model, the compiler is forced to use a pessimistic schedule, thus degrading
overall performance.

2 Related Work

There has been related work in 2 domains: high-level synthesis and mainstream com-
pilers and architectures. In high-level synthesis. Panda et al. [7] present pre-synthesis
optimizations to use the page-mode DRAM access. [6| extend this work to Synchronous
and RAMBUS DRAMs, using burst-mode accesses, and exploiting memory bank inter-
leaving.

Recent work on interface synthesis [1], [2] present techniques to formally derive node
clusters from interface timing diagrams. These techniques can be applied to provide an
abstraction of the memory module timings required by our approach.

In [3] and [4| we presented preliminary results on generating and using accurate tim-
ing information in the compiler, for page- and burst-mode DRAM accesses, as well as
in the presence of caches, hiding the miss latencies by improving the overlap between
cache misses and hits to a different cache line.

In the compilers/architectures domain, recent work by Rixner et al. [8] presents a
memory controller approach to dynamically reorder the memory accesses, and improve
the utilization of the DRAM access modes The dynamic reordering applies only to a
window of pending memory accesses. By performing static compiler optimizations, it
is possible to further improve the memory access schedule by globally reordering them.
We complement this work by making the compiler aware of the memory access modes
and timings. Moreover, we apply a similar compiler approach in the presence of caches.

3 Overview of Experiments

Our experiments demonstrate the performance gains obtained by using accurate tim-
ing in the compiler for the Texas Instruments TIC6201 VLIW DSP [9] processor in-
terfaced with the IBM03I6409C [51 Synchronous DRAM. We first optimize a set of

Aggresive Memory-Aware Compilation 149

benchmarks to better utilize the efficient memory access modes (e.g., through memory
mapping, code reordering or loop unrolling), and then we use the accurate timing model
to further improve the performance by hiding the latencies of the memory operations. To
separate out the benefit of the better timing model from the gain due to the access mode
optimizations and the access modes themselves, we present the set of results which show
the performance gains obtained by scheduling with accurate timing in the presence of
a code already optimized for memory accesses, and compare them to the performance
of the same memory-access-optimized code using less accurate timing, scheduled opti-
mistically, assuming the shortest access time available (page-mode access), and relying
on the memory controller to account for longer delays. This optimistic scheduling is the
best alternative available to the compiler, short of an accurate timing model. The per-
formance gains from exploiting detailed memory timing vary from 6% to 47.9%, and
an average of 23.9% over a schedule that exploits the efficient access modes without
detailed timing. We also compare the above approaches to the baseline performance of
the system in the absence of efficient memory access modes.

Our second set of experiments demonstrate the performance gains obtained by ag-
gressively optimizing the memory miss traffic on a set of multimedia and DSP bench-
marks. We perform the optimization in two phases: first we isolate the cache misses and
attach accurate hit and miss timing to the memory accesses, to allow the scheduler to
better target the memory subsystem architecture, obtaining between 15.2% and 52.8%
performance improvement over the traditional compiler. We then further optimize the
cache miss traffic, by loop shifting to reduce the intra-iteration dependence chains due
lo accesses to the same cache line, and allow more overlap between memory accesses,
resulting in a further 21.3% average performance improvement.

Currently, our work applies to wide issue statically scheduled VLIW Processors, and
preliminary results have been presented at DAC-2000 [3] and ICCAD-2000 [4]. We
believe that our techniques are also applicable to dynamically scheduled processors.
Our on-going work evaluates the improvements of our approach for out-of-order issue
superscalar processors, and also addresses the tradeoff between increase in code size
(due to loop unrolling) versus performance improvement.

References

[1] P. Chou, R. Ortega, and G. Borriello. Interface co-synthesis techniques for embedded systems. In
ICCAD, 1995.

(2] K.-S. Chung. R. Gupta, and C. L. Liu. Interface co-synihesis techniques for embedded systems. In
ICCAD, 1996.

[3] P. Grun, N. Dutt, and A. Nicolau. Memory aware compilation through accurate timing extraction. In
DAC. 2000.

[4] P. Grun, N. Dutt, and A. Nicolau. Mist: An algorithm for memory miss traffic mangement. In ICCAD.
2000.

150 Peter Grun, Nikil Dutt, and Alex Nicolau

[51 IBM Microelectronics. Data Shocls for Synchronous DRAM 1BM03I6409C.
www. ch ips. ibm. com/products/memoryA)8J3348/.

|6] A. Khare. P. R. Panda. N. D- Dun, and A. Nicolau. High level synthesis with synchronous and rambus
drams. In SASIMI, Japan. 1998.

[7] P. Panda. N. Dutl. and A. Nicolau. Memory Issues in Embedded Syslems-on-Chip. Kluwcr, 1999.

[8J S. Rixner, W. Dally. U. Kapasi. P. Matlson, and J. Owens. Memory access scheduling. In ISCA,
2000.

19) Texas Instruments. TMS32OC620I CPU and Instruction Set Reference Guide.

Aggresive Memory-Aware Compilation 151

Energy/Performance Design of Memory Hierarchies
for Processor-in-Memory Chips�

Michael Huang�, Jose Renau�, Seung-Moon Yoo �, and Josep Torrellas�
�Department of Computer Science

�Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

�weihuang,renau,yoo2,torrellas�@cs.uiuc.edu
http://iacoma.cs.uiuc.edu/flexram

1 Introduction

Merging processors and memory into a single chip has the well-known benefits of al-
lowing high-bandwidth and low-latency communication between processor and mem-
ory, and reducing energy consumption. As a result, many different systems based on
what has been called Processor In Memory (PIM) architectures have been proposed [1,
3, 7, 8, 10, 12–16, 18].

Recent advances in technology [4, 5] appear to make it possible to integrate logic
that cycles nearly as fast as in a logic-only chip. As a result, processors are likely to put
much pressure on the relatively slow on-chip DRAM. To handle the speed mismatch
between processors and DRAM, these chips are likely to include non-trivial memory
hierarchies in each DRAM bank.

With many on-chip high-frequency processors, all of them potentially accessing the
memory system concurrently, these chips will consume much energy. In addition, these
chips are likely to be used in non-traditional places like the memory of a server [3, 7,
12] or the I/O subsystem [1], which may not have heavy-duty cooling support. Conse-
quently, it is important to design the chips for energy efficiency.

In this abstract, we examine, from a performance and energy-efficiency point of
view, the design of the memory hierarchy in a multi-banked PIM chip with many sim-
ple, fast processors. Our results suggest the use of per-processor memory hierarchies
that include modest-sized caches, simple DRAM bank organizations that support seg-
mentation, and no prefetching.

2 Memory Hierarchies for PIM Chips

Our focus architecture is a PIM chip that includes tens of relatively simple, high-
frequency processors, each of which is associated with a bank of DRAM. Such a design
has been suggested for systems like Active Pages [12, 13], FlexRAM [7], and DIVA [3]
among others. The chip can be modeled as in Figure 1-(a), where the organization of the

� This work was supported in part by the National Science Foundation under grants NSF
Young Investigator Award MIP-9457436, MIP-9619351, and CCR-9970488, DARPA Con-
tract DABT63-95-C-0097, and gifts from IBM and Intel.

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 152–159, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Memory Hierarchies for Processor-in-Memory Chips 153

processors, memory, and network may vary. We feel, however, that currently-proposed
designs are relatively conservative in logic speed. Recent advances in technology appear
to allow logic to cycle nearly as fast as in a logic-only chip [4, 5]. This means that these
chips may soon include processors cycling at about 800-1000 MHz. Such processors
are likely to put much pressure on the slower DRAM.

���� ���� ������ ����

���� ������ ��������

Network

������ProcessorDRAM Bank

(a)

Sub-banked
DRAM

D-Cache

SRAM
I-Mem

DB
RB

Processor

(b)

Row Dec Row Dec Row Dec Row Dec

256256

256 256

Data Buffer

DRAM

RBRBRBRBRB

D
-C

ache

(c)

Fig. 1. Example of chip architecture considered. RB, DB, and Row Dec stand for row buffer, data
buffer and row decoder, respectively.

To handle the speed mismatch between processors and DRAM, these chips are
likely to associate a non-trivial memory hierarchy to each DRAM bank. In this pa-
per, we assume a per-bank baseline memory hierarchy as in Figure 1-(b). In the figure,
the instruction memory hierarchy includes a fast SRAM memory. The data memory hi-
erarchy includes a cache with hardware sequential prefetch of 1 line. The DRAM bank
itself is sub-banked and has row and data buffers. For example, Figure 1-(c) shows the
DRAM organized into 8 sub-banks, with 10 row buffers, and 2 256-bit data buffers.

Unlike in memory-only chips, where the DRAM organization is often limited to
standard designs, embedded systems allow many different organizations for the DRAM
array. For example, designers can change the width and length of a DRAM sub-bank,
and the number of sub-banks. These changes can affect the performance delivered and
the energy consumed by DRAM accesses, and the area utilized.

154 Michael Huang et al.

In a traditional DRAM array organization, when a bank is accessed, every other
sub-bank is activated. Consecutive sub-banks are not activated because they share a
row buffer. Figure 2-(a) shows a 4 sub-bank organization. We now consider three im-
provements: segmentation, interleaving, and pipelining.

ta d ta d

ta d

ta d ta d

ta d

ta d

d

(e)

ta d ta d

ta d ta d

(d)

(2,y)

(1,y)a: Address Activation Time
t: Sub-bank Occupancy Time
d: Data Transfer Time
(x,y) y sub-bank in data bus x

��
��
��
��

Active
W�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����Active �
�
�
�W ������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���� ����Active

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������������������������������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

0 1 2 3 4

5 76 98W/2

��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

(0,0)

(0,1)

(0,2)

(0,3)

d

ta

t

d

a

a t

dta

ta d

(1,0)

(1,1)

(1,3)

(1,2)

0 1 2 3 4

(a) Traditional
Bit Line

W
or

d
L

in
e

0 1 2 3 4

(0,0) (0,1) (0,2)

(1,1) (1,2) (1,3)

(c) Interleaved Segmented

(b) Segmented

Data Bus

Fig. 2. Different DRAM bank organizations and timings.

With segmentation (Figure 2-(b)), only one sub-bank is activated at a time. The
resulting row buffer decoupling changes the hit rate of the row buffers. In addition,
DRAM accesses consume less energy: because only half of the bit lines are activated,
about 50% of the energy is saved.

With interleaving, each sub-bank is vertically sliced and a data bus is assigned to
each of the resulting slices. Figure 2-(c) shows a 2-way interleaved system. The perfor-
mance is higher because both data busses work in parallel (Figure 2-(d) shows a timing
diagram with the maximum overlap, assuming a single address bus). As for energy, al-
though row buffer hits now cost a bit more, DRAM accesses again save about 50% of
the energy because only half of the cells are activated. The area used increases.

Finally, one problem shown in Figure 2-(d) is that reads from different sub-banks
that share a data bus are serialized by long sub-bank occupancy times. With pipelining,
these sub-banks can overlap their occupancy times (Figure 2-(e)). The only serialization
happens in the shared address bus and data bus. The result is higher performance. As
for energy, pipelining has only a small impact.

3 Evaluation Environment

We evaluate the PIM chip of Section 2 using a MINT-based simulation system [9].
The architecture modeled is a single chip with 64 processors connected in a ring. Each
processor is associated with a 1-Mbyte DRAM bank like in Figure 1-(b). The baseline

Memory Hierarchies for Processor-in-Memory Chips 155

parameters of each processor-bank pair are shown in Table 1. The target technology is
IBM’s 0.18 �m Blue Logic SA-27E ASIC [4] with the default voltage of 1.8 V.

Processor D-Cache I-Memory Data Buffer Row Buffer Sub-Bank

2-issue in-order 800MHz Sz: 8KB, WB Size: 4 Kinst. Number: 1 Number: 5 Number: 4
BR Penalty: 2 cycles Assoc: 2 Line: 4 inst. Size: 256 b Size: 1 KB Cols: 4096
Int,Ld/St,FP Units: 2,1,0 Line: 32 B RTrip:1.25ns Bus: 256 b Bus: 256 b Rows: 512
Pending Ld,St: 2,2 RTrip:1.25ns RTrip:3.75ns RTrip:7.5ns RTrip:15 ns

Table 1. Parameters for a single memory bank and processor pair. In the table, BR and RTrip
stand for branch and contention-free round-trip latency from the processor, respectively.

Appl. What It Does Problem Size
D-Cache Average
Hit Rate Power(W)

GTree Data mining: tree generation 5 MB database, 77.9 K records, 29 attributes/record 50.7% 10.2
DTree Data mining: tree deployment 1.5 MB database, 17.4 K records, 29 attributes/record 98.6% 10.8
BSOM BSOM neural network 2 K entries, 104 dims, 2 iters, 16-node network, 832 KB db 94.7% 15.5
BLAST BLAST protein matching 12.3 K sequences, 4.1 MB total, 1 query of 317 bytes 96.9% 8.7
Mpeg MPEG-2 motion estimation 1 1024x256 frame plus a reference frame. Total 512 KB 99.9% 11.3
FIC Fractal image compressor 1 512x512 image, 4 512x512 internal structure. Total 2 MB 97.8% 6.1

Table 2. Applications executed.

The names for the DRAM bank organizations that we evaluate are Trad, S, SP,
IS, and ISP, which refer to traditional, segmented, segmented pipelined, interleaved
segmented, and interleaved segmented pipelined, respectively. In each case, we add
��� �� to refer to �-ways interleaved with � sub-banks per way.

To estimate the energy consumed in the chip, we have applied scaling-down theory
to data on existing devices reported in the literature, as well as used several techniques
and formulas reported in the literature [6, 17, 19, 20]. We add the contributions of the
processors, clock, memory hierarchies, and other modules. A detailed discussion of
the methods that we have followed can be found in [21]. In [21], we have addition-
ally validated our estimates with CACTI [19] and with published results on the ARM
processor [11].

For the experiments, we use 6 applications that are suitable to the integer-based
PIM chip considered: they access a large memory size, are very parallel, and are integer
based. They come from several industrial sources. We have parallelized each application
into 64 threads by hand.

Table 2 lists the applications and their characteristics. They include the domains of
data mining, neural networks, protein matching, multimedia, and image compression.
Each application runs for several billions of instructions.

156 Michael Huang et al.

4 Evaluation

The best memory hierarchy organization depends on the metric being optimized. We
consider two metrics: performance and energy-delay product. In our evaluation, we
start with the baseline architecture of Section 3 and then vary it. As a reference, we use
an ideal architecture (Perf): loads and stores are satisfied with zero latency and consume
no energy in the memory system.

Mpeg
GTree

FIC
DTree

BSOM
BLAST
Average

IP
C

(b)
Trad(1,4) S(1,4) SP(1,4) IS(2,4) ISP(2,4) IS(2,8) ISP(2,8) PerfTrad(1,4) S(1,4) SP(1,4) IS(2,4) ISP(2,4) IS(2,8) ISP(2,8) Perf

(a)

0

20

40

60

80

100

120

0

20

40

60

80

100

120

Fig. 3. Effect of the DRAM bank organization on the IPC in systems with 1-Kbyte (a) and 8-
Kbyte (b) data caches.

Maximizing Performance
To compare performance, we measure the average IPC delivered by the combined

64 processors for the duration of the application. We first evaluate the effect of the mem-
ory bank organization. Figure 3 shows the IPC of the applications running on the base-
line architecture for different memory bank organizations. Charts (a) and (b) correspond
to systems with 1- and 8-Kbyte D-caches, respectively. The memory organizations are
ordered from the simpler ones on the left side to the more sophisticated ones on the
right side. Each chart has an Average line that tracks the average of all applications.

Figure 3-(a) shows that performance improves slightly as we move to the more
sophisticated designs. Going from Trad(1,4) to ISP(2,8) increases the IPC by an average
of 8%. However, for 8-Kbyte caches (Figure 3-(b)), the changes are very small. This is
because, with large caches, there are relatively few cache misses and, as a result, the
type of DRAM bank organization matters less.

Comparing the IPC in Perf and ISP(2,8), we see the IPC lost in the most advanced
memory system. This fraction is on average 18% and 11% in Figures 3-(a) and (b).

Figure 5-(a) shows the effect of the cache size and prefetching support. We consider
the baseline architecture with three different DRAM bank organizations: conservative
(Trad(1,4)), aggressive (ISP(2,8)), and in-between (IS(2,4)). The figure shows the IPC
averaged over all applications. We analyze caches of 256 bytes, 1 Kbyte, 8 Kbytes, and
16 Kbytes, all with and without prefetching. For each memory organization, there are
8 bars, labeled with the cache size in bytes followed by P or NP for prefetching or not
prefetching, respectively.

Memory Hierarchies for Processor-in-Memory Chips 157

The best performance is achieved with the largest cache size (16 Kbytes). However,
large caches deliver diminishing returns. The figure also shows that adding the simple
prefetching support considered here makes little difference to performance.

Mpeg
GTree

FIC
DTree

BSOM
BLAST
Average

E
ne

rg
y-

D
el

ay
 P

ro
du

ct

(b)(a)
Trad(1,4) S(1,4) SP(1,4) IS(2,4) ISP(2,4) IS(2,8) ISP(2,8) Perf Trad(1,4) S(1,4) SP(1,4) IS(2,4) ISP(2,4) IS(2,8) ISP(2,8) Perf

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Fig. 4. Effect of the DRAM bank organization on the energy-delay product in systems with 1-
Kbyte (a) and 8-Kbyte (b) data caches.

Minimizing the Energy-Delay Product
In embedded systems, a common figure of merit is the energy-delay product [2]. A
low product implies that the system is both fast and energy-efficient. Consequently, in
this section, we compare the energy-delay product of the chips with different memory
hierarchy designs. To compute the energy consumed, we add up the contributions of all
the subsystems in the chip.

Figures 4-(a) and 4-(b) show the energy-delay product of the chip under the baseline
architecture for different DRAM bank organizations. Charts (a) and (b) correspond to
systems with 1- and 8-Kbyte D-caches respectively, and are organized as in Figures 3-
(a) and 3-(b). For each application, the charts are normalized to Perf.

In systems with 1-Kbyte caches (Figure 4-(a)), the average energy-delay product
decreases for the more advanced memory organizations. For example, the product in
ISP(2,8) is only 60% of that in Trad(1,4). The reason is that advanced DRAM bank or-
ganizations deliver slightly higher IPCs and consume much less energy in the process.
However, as caches increase to 8 Kbytes (Figure 4-(b)), the changes are smaller. Over-
all, for 8-Kbyte cache systems, only segmentation (going from Trad(1,4) to S(1,4))
makes a significant difference. Supporting interleaving and increasing the number of
sub-banks from (2,4) to (2,8) has only a small effect.

Figure 5-(b) measures the energy-delay product for the average of all applications
for different cache sizes and prefetching support. The bars are normalized to Perf. From
the figure, we see that designs with larger caches tend to have lower energy-delay prod-
ucts. For example, in Trad(1,4), the product with 16-Kbyte caches is about 30% of the
product with 256-byte caches. The reason is that caches have a double effect: they speed
up the program and, in addition, eliminate energy-consuming memory accesses. We ob-
serve, however, that for the more advanced memory organizations and large caches, the
trend reverses: 16-Kbyte caches are slightly worse than 8-Kbyte caches. The reason is

158 Michael Huang et al.

 0

 9

 18

 27

 36

 45

 54

 63

 72

 81

 90

IPC

25
6N

P

10
24

NP

81
92

NP

16
38

4N
P

25
6P

10
24

P

81
92

P

16
38

4P

25
6N

P

10
24

NP

81
92

NP

16
38

4N
P

25
6P

10
24

P

81
92

P

16
38

4P

25
6N

P

10
24

NP

81
92

NP

16
38

4N
P

25
6P

10
24

P

81
92

P

16
38

4P

Trad(1,4) IS(2,4) ISP(2,8)

(a)

 1

 1.9

 2.8

 3.7

 4.6

 5.5

 6.4

 7.3

 8.2

 9.1

 10

E*D

25
6N

P

10
24

NP

81
92

NP

16
38

4N
P

25
6P

10
24

P

81
92

P

16
38

4P

25
6N

P

10
24

NP

81
92

NP

16
38

4N
P

25
6P

10
24

P

81
92

P

16
38

4P

25
6N

P

10
24

NP

81
92

NP

16
38

4N
P

25
6P

10
24

P

81
92

P

16
38

4P

Trad(1,4) IS(2,4) ISP(2,8)

(b)

Fig. 5. Effect of the cache size and prefetching support on IPC (a) and energy-delay product (b).

that the diminishing returns in lower miss rates delivered by larger caches do not com-
pensate for the higher energy consumption that larger caches require. We also see that
simple prefetching does not help.

5 Discussion

In a PIM chip like the one analyzed here, minimizing the energy-delay product is likely
to be the top priority. Our results suggest to use modest-sized D-caches (8 Kbytes), a
simple DRAM bank organization that supports only segmentation, and no prefetching.
Modest-sized caches are effective: they speed-up the application, are energy-efficient,
consume modest area, and render fancy DRAM bank organizations largely unnecessary.
If area is not an issue, the energy-delay product can be improved slightly by supporting
interleaving in the DRAM bank and increasing the number of sub-banks.

References

1. A. Brown et al. ISTORE: Introspective Storage for Data-Intensive Network Services. Work-
shop on Hot Topics in Operating Systems, March 1999.

2. R. Gonzalez and M. Horowitz. Energy Dissipation In General Purpose Microprocessors.
IEEE Journal on Solid-State Circuits, 31(4):1277–1284, September 1996.

3. M. Hall et al. Mapping Irregular Aplications to DIVA, a PIM-Based Data-Intensive Archi-
tecture. In Supercomputing, November 1999.

4. IBM Microelectronics. Blue Logic SA-27E ASIC. http://www.chips.ibm.com/
news/1999/sa27e, February 1999.

5. S. Iyer and H. Kalter. Embedded DRAM Technology: Opportunities and Challenges. IEEE
Spectrum, April 1999.

6. M. Kamble and K. Ghose. Analytical Energy Dissipation Models for Low Power Caches. In
International Symposium on Low Power Electronics and Design, pages 143–148, 1997.

7. Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas. FlexRAM:
Toward an Advanced Intelligent Memory System. In International Conference on Computer
Design, pages 192–201, October 1999.

Memory Hierarchies for Processor-in-Memory Chips 159

8. P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pursuing a Petaflop: Point Designs for
100 TF Computers Using PIM Technologies. In Frontiers of Massively Parallel Computation
Symposium, 1996.

9. V. Krishnan and J. Torrellas. An Execution-Driven Framework for Fast and Accurate Simu-
lation of Superscalar Processors. In International Conference on Parallel Architectures and
Compilation Techniques, pages 286–293, October 1998.

10. K. Mai et al. Smart Memories: A Modular Reconfigurable Architecture. In International
Symposium on Computer Architecture, June 2000.

11. J. Montanaro et al. A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor. IEEE Journal
of Solid State Circuits, 31(11):1703–1714, November 1996.

12. M. Oskin, F. Chong, and T. Sherwood. Active Pages: A Computation Model for Intelligent
Memory. In International Symposium on Computer Architecture, pages 192–203, June 1998.

13. M. Oskin et al. Exploiting ILP in Page-Based Intelligent Memory. In International Sympo-
sium on Microarchitecture, 1999.

14. D. Patterson et al. A Case for Intelligent DRAM. IEEE Micro, pages 33–44, 1997.
15. D. Patterson and M. Smith. Workshop on Mixing Logic and DRAM: Chips that Compute

and Remember. 1997.
16. S. Rixner et al. A Bandwidth-Efficient Architecture for Media Processing. In International

Symposium on Microarchitecture, November 1998.
17. C-L. Su and A. Despain. Cache Design Trade-offs for Power and Performance Optimization:

A Case Study. In International Symposium on Low Power Electronics and Design, pages 63–
68, April 1995.

18. E. Waingold et al. Baring It All to Software: Raw Machines. IEEE Computer, pages 86–93,
September 1997.

19. S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Access and Cycle Time Model. IEEE
Journal on Solid-State Circuits, 31(5):677–688, May 1996.

20. N. Yeung et al. The Design of a 55SPECint92 RISC Processor under 2W. ISSCC Digest of
Technical Papers, pages 206–207, February 1994.

21. S-M. Yoo, J. Renau, M. Huang, and J. Torrellas. FlexRAM Architecture Design Parameters.
Technical Report CSRD-1584, Department of Computer Science, University of Illinois at
Urbana-Champaign, October 2000. http://iacoma.cs.uiuc.edu/flexram/publications.html.

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp 160–168, 2001.
© Springer-Verlag Berlin Heidelberg 2001

SAGE: A New Analysis and Optimization System
for FlexRAM Architecture

Tsung-Chuan Huang and Slo-Li Chu

Department of Electrical Engineering, National Sun Yat-sen University
Kaohsiung, Taiwan, R.O.C.

tch@mail.nsysu.edu.tw d8631817@student.nsysu.edu.tw

Abstract. Intelligent memory is a new class of computer architecture, to reduce
the performance gap between the processor and memory. After analyzing a
region of application, we decide to take “statement” viewpoint to extract more
potential benefit of program running on intelligent memory architecture. Then
we develop our SAGE system, a “statement” base analysis system, different
from other iteration base system. In this paper, we will describe how SAGE
split statement and make an acceptable schedule to execute on PHost and
PMem simultaneously. Finally we will discuss our recently result of this
approach.

1 Introduction

In order to solve the performance gap between the processor and memory and to
exploit maximum memory bandwidth, many researchers proposed a new class of
computer architecture: Intelligent Memory [2][6][7][8]. After comparing several
intelligent memory systems, we decide to adopt UIUC’s FlexRAM [3,10] architecture
as our basic platform to develop optimization and programming model.

When examining current Intelligent Memory systems, we find that they usually
focus on taking fully parallel applications as their benchmarks and spawning a lot of
PIM processors, like massive multiprocessor systems, to exploit more parallelism.
However, these results cannot reveal the real benefit of Intelligent Memory. Therefore
we try to explore another research direction: to improve the performance of general
application, instead of fully parallelizable ones. Here, we propose our SAGE
(Statement-Analysis-Grouping-Evaluation) system, a new analysis model with a suite
of optimizing skills, to extract parallelizable portion of general programs and to
achieve better load balance between PHost and PMem.

In our recent experimental results, quite good speedup is obtained, which exceeds
the limitation of computation capability of PMem, in one-PHost-one-PMem
environment. In what follows, we will briefly describe analysis stages of SAGE first,
then present algorithms and an example to demonstrate how it works. Finally, we will
discuss our experimental results of synthetic example and two real benchmark
programs in SPEC 95 and BLAS3.

SAGE: A New Analysis and Optimization System for FlexRAM Architecture 161

2 Intelligent Memory Architecture

A general view of the FlexRAM [3,10] architecture is shown in Figure 1. Each
FlexRAM chip has 1 PMem and 64 PArray memory processors. The host processor of
the target workstation is called PHost. The architecture parameters are listed in Table
1.

In order to simplify the problem and exploit the benefits of PIM architectures, in
this paper, we only consider the system with a single host processor (PHost) and a
single memory processor (PMem). We are in process of extending our SAGE system
to fit more complicated PIM architectures.

3 System Organization

The organization of SAGE is shown in Figure 2. This system will provide four major
advantages. First, instead of iteration, SAGE adopts simple-statement loop as the
basic execution unit. This different approach will provide a novel methodology to find
better schedule in procedure-level parallelism. Second, for its simple, flexible
optimizing stages, SAGE can cooperate with other traditional iteration-base analysis
systems (such as UIUC’s Polaris) to explore the potential parallelism easily. Third,
from its heuristic scheduling mechanism, SAGE can generate suitable execution
procedures and dispatch them to PHost and PMem in accordance with practical
system configuration. Fourth, programmers can use this analysis model easily to
develop their applications for FlexRAM or restructure the original sequential (or
parallel) program into a load-balanced, task- separated form. The following of this
section we will describe some important stages of this system.

In te r-C h ip N e tw o rk

L 1 ,L 2 C a ch e s

P .H o st

P la in
D R A M

P .M e m

C a ch e s

P .A rra y

D R A M

F le x R A M

Fig. 1. The organization of FlexRAM
architecture.

Table 1. Parameters of the FlexRAM architecture.

P.Host P.Host L1 & L2 Bus & Memory

Freq: 800 MHz
Issue Width: 6
Dyn Issue: Yes
I-Window Size: 96
Ld/St Units: 2
Int Units: 6
FP Units: 4
Pending Ld/St: 8/8
BR Penalty: 4 cyc

L1 Size: 32 KB
L1 RT: 2.5 ns
L1 Assoc: 2
L1 Line: 64 B
L2 Size: 256 KB
L2 RT: 12.5 ns
L2 Assoc: 4
L2 Line: 64 B

Bus: Split Trans
Bus Width: 16 B
Bus Freq: 100 MHz
PHost Mem RT:

262.5 ns
PMem Mem RT:
50.5 ns

P.Mem P.Mem L1 P.Array

Freq: 400 MHz
Issue Width: 2
Dyn Issue: No
Ld/St Units: 2
Int Units: 2
FP Units: 2
Pending Ld/St: 8/8
BR Penalty: 2 cyc

L1 Size: 16 KB
L1 RT: 2.5 ns
L1 Assoc: 2
L1 Line: 32 B
L2 Cache: No

Freq: 400 MHz
Issue Width: 1
Dyn Issue: No
Pending St: 1
Row Buffers: 3
RB Size: 2 KB
RB Hit: 10 ns
RB Miss: 20 ns
RB Penalty: 2 cyc

* BR stands for branch, RT for round-trip latency from
the processor, and RB for row buffer.

162 Tsung-Chuan Huang and Slo-Li Chu

3.1 Statement Splitting

In this stage, we use Loop Distribution [1][4] ,a well-known transformation of
parallelizing techniques, to split original dependence graph by construct our Weighted
Partition Dependence Graph (WPG). Then it will be applied in our following
optimization and scheduling stages.

Definition 1 (Loop Denotation) [4]

A loop is denoted by L = (1I , 2I ,…….. dI)(1S , 2S ,…….. kS), where jI is a loop

index, and jS is a body statement which maybe an assignment statement or another

loop.

Definition 2 (Node Partition Π) [4]

On the dependence graph G , for a given loop L, we define a node partition Π of

{ 1S , 2S ,…….. dS } in such a way that kS and lS , lk ≠ , are in the same subset if and

only if lk SS ∆ and kl SS ∆ , where ∆ is an indirectly data dependent relation. On the

partition Π ={ 1π , 2π }, we defined partial ordering relationsα ,α , and oα , such

that for i ≠ j

1) iπ α jπ iff there exist ikS π∈ and jlS π∈ such that lk SS δ , whereδ is true

dependence relation .

P rogram
A nalysis
an d P re-

O p tim ization

L egality
A nalysis

S tatem en t
Sp litting

 W PG B u ild in g

 W avefron t
G en eratin g

 S ch ed u le
D eterm in ation

Su broutine
G en eratin g

Su broutine
O p tim ization

L oad B alance
A dju stm ent

Sta tem ent
Sp litting

Pa ralle liza t-
ion

S o u rce
P ro g ra m

S u b ro u tin e
fo r

P H o s t

S u b ro u tin e
fo r

P M e m

Fig. 2. Analysis and optimization stages of SAGE system.

SAGE: A New Analysis and Optimization System for FlexRAM Architecture 163

2) iπ α jπ iff there exist ikS π∈ and jlS π∈ such that lk SS δ where δ is

anti dependence relation.

3) iπ oα jπ iff there exist ikS π∈ and jlS π∈ such that lk SS 0δ where 0δ is

output dependence relation.

Definition 3 (Weighted Partition Dependence Graph)

For a given node partition Π as in Definition 2, we define a weighted partition

dependence graph WPG(P,E). In WPG node Ppi ∈ , ip (iI , iS , iW , iO) represents

a partition Π∈iπ where iI , iS are the same as Definition 1, iW (PH,PM) denotes

the PHost/PMem weight value of this node , iO denotes the execution order of this

node.

Algorithm 1. (Statement Splitting Algorithm)

Given a loop L = (1I , 2I ,…….. dI)(1S , 2S ,…….. dS)

Step1: By analyzing subscript expressions and indexing pattern construct a
dependence Graph G

Step2: On G establish a node partition Π as in Definition 2. If there are some large
partition caused by control dependent relations, we use some approach to
transfer control dependence to data dependence[5] and then partitioning it
as above.

Step3: On the partition Π establish a weighted partition dependence graph
WPG(P,E) as in Definition 3

3.2 Wavefront Generating and Scheduling

In this section, we propose an algorithm for the scheduling of PHost and PMem. In
our method, the weights of the blocks in partition P are determined first, then the
execution order for each block is determined according to their dependence relation
and lexicographic order. The blocks that can be executed simultaneously are assigned
in a wavefront. The blocks in the same wavefront are scheduled on PHost and PMem
processors based on the weights of them.

4 Example

To illustrate how to analyze and optimize program by SAGE system, we take a simple
program as example, which is shown in Figure 3. Assume that this program contains
three major loops:

164 Tsung-Chuan Huang and Slo-Li Chu

Algorithm 2. (Weighting and Scheduling Algorithm)

[Input]
WPG=(P(I,S,W,O),E), the original weighted partition dependence graph without

weight W (PH,PM) and order O assignment.

[Output]
 A Execution wavefront schedule},{ 21 WfWfWf = where

)}.....(),...({ lkjii PPPMPPPHWf = ,)....(ji PPPH denoted that partitions for

PHost execute in wavefront i, iW denoted that partitions for PMem

execute in wavefront i.

[Intermediate]
 W is a working set of nodes ready to visit
 max_wf is the maximum number of wavefront

 max_pred_O(ip) is maximum execution order value iO of all ip ’s predecessor

partitions

 PHW(ip) is PHost weight value of ip

 PMW(ip) is PMem weight value of ip

[Algorithm]

/*Initialization and identifing weight */

for each ∋i Ppi ∈ do begin

iW (PH,PM)= determine_weight (iI , iS)

iO = 0

end for

/* Determining Execution Order */

for each ∋i ip that has no predecessors do begin

iO = 1

 W=W-{ ip }

end for
done = False

SAGE: A New Analysis and Optimization System for FlexRAM Architecture 165

while done = False AND W 2S φ do begin
 done=True

for each ∋i ip ∈W do begin

if max_pred_O(ip)=0 then

 done=False
else

iO = max_pred_O(ip)+1

 W=W-{ ip }

 max_wf= iO
end if

end for
end while

/*Scheduling*/

wf=1 /* current wavefront number */

for wf=1 to max_wf

 pick all ∋i iO =wf , store all ip in wf_tmp

while done = False do begin
 done = False
 divide wf_tmp into two arbitrary subsets a, b
 /* here ba ∪ =wf_tmp. ba ∩ =φ */

if)()(bPHWaPHW − is minimal of all possible a, b . then

)}(),({)(bPHaPHWf wf =
 done=Ture

end if
end while

end for

Firstly, the preliminary analysis and pre-optimization are applied, then statements
are separated. According to the results of legality analysis, we can distinguish which
statement can be split. The statement unable to be split will keep the original form..
All other statements will be split into a single-statement loop. Figure 4. shows the
results of loop 2 after statement splitting.

166 Tsung-Chuan Huang and Slo-Li Chu

DO I = 1 TO N
DO J = 1 TO M

S1: A(I,J) = B(I,J)+C(I,J)
S2: A(I,J) = A(I-1,J)+A(I+1,J)+C
S3: X = A(I,J)+2
S4: Y = X*C
S5: D(I,J) = 2*D(I,J)+3
S6: E(I,J) = 2*E(I,J)+2

ENDDO
ENDDO

(a) Loop 1

DO J = 1 TO N
DO I = 1 TO M

S7: F(I,J) = E(I,J)*F(I,J)
S8: F(I,J+1) = F(I,J)+5
S9: G(I,J) = G(I-1,J)*G(I,J-1)

ENDDO
ENDDO

(b) Loop 2

DO I = 1 TO N
DO J = 1 TO M

S10: Z = A(I,J)+A(I,J-1)
S11: A(I,J) = Z*C

ENDDO
ENDDO

(c) Loop 3

Fig. 3. A simple program with three individual loops.

DO J = 1 TO N
DO I = 1 TO M

S7: F(I,J) = E(I,J)*F(I,J) • b4
ENDDO

ENDDO

DO J = 1 TO N
DO I = 1 TO M

S8: F(I,J+1) = F(I,J)+5 • b5
ENDDO

ENDDO

DO J = 1 TO N
DO I = 1 TO M

S9: G(I,J) = G(I-1,J)*G(I,J-1) • b6
ENDDO

ENDDO

 Fig. 4. Result of loop 2 after statement splitting.

I = { N , M }
S={S1 ,S2 ,

S3 ,S4}

W = { 4 2 , 4 9 } O = 1

b 1

I = { N , M } S = { S 5 }

W = { 1 2 , 1 4 } O = 1

b 2

I = { N , M } S = { S 6 }

W = { 1 2 , 1 4 } O = 1

b 3

I = { N , M } S = { S 7 }

W = { 1 6 , 1 1 } O = 2

b 4

I = { N , M } S = { S 8 }

W = { 1 2 , 1 4 } O = 3

b 5

I = { N , M } S = { S 9 }

W = { 1 8 , 2 1 } O = 1

b 6

I = { N , M }
S={S10 ,

S 1 1 }

W = { 1 8 , 2 1 } O = 2

b 7

Wavefront 1

Wavef ront 2

Wavef ront 3
Fig. 5. WPG graph before SAGE generates execution schedule.

SAGE: A New Analysis and Optimization System for FlexRAM Architecture 167

The Weighted Partition Dependence Graph (WPG) can be drawn as in Figure 5.
After the manipulation of scheduling stage (cf. Algorithm 2), the system will generate
the good execution schedule: WF(1) = {PH (b1) ,PM(b2, b3, b6)}, WF(2)={PH(b4),
PM(b7)}, WF(3)={PH(b5)} using Algorithm 3 according to the PHost and PMem’s
computation power and characteristics.

5 Experimental Results

The code generated by SAGE is targeted to FlexRAM simulator [3,10] developed by
IA-COMA Lab in UIUC. This simulation environment models dynamic superscalar
multiprocessor and detailed memory behaviors cycle by cycle. The detailed
configuration is shown in Table 1. In addition to the original PHost processor, we
only spawn one PMem processor. In order to reflect the advantages of FlexRAM, we
also experiment on the general heterogeneous environments with two processors, in
which the co-processor is identical to PMem other than its weak memory access
capability (because it is not in the memory).

 The applications evaluated include four programs: swim is from SPEC95,
strmm is from BLAS3, and example is the synthetic program we proposed in this
paper. Table 2 shows the execution time for these three applications.

The approximated performance ratio between PHost and PMem is 8:1. This
means that if PMem works with PHost simultaneously, the speedup will be up to
1.125 theoretically. But we get more than 1.125 in Table 2. The reason to explain this
result is that PMem has shorter memory access latency. This attests the major
objective of Intelligent Memory system: to reduce the performance gap between
processor and memory.

Table 2. Performance results of three programs: swim (SPEC95), strmm (BLAS3), and our
demonstration example.

Benchmarks P.Host Exec.

Cycles
Optimized
Cycles

Speed UP
/P.Host

swim 86144754 64190746 1.342

hstrmm 107235775 76868804 1.395

example 10129486 6889560 1.470

6 Conclusion

In this paper, we propose statement spitting and scheduling mechanisms for
intelligent memory architectures to exploit the computing power of the host and
memory processors. The algorithms are general enough, not only for FlexRAM
architecture but also can be applied on heterogeneous mix of processors systems. We

168 Tsung-Chuan Huang and Slo-Li Chu

hope this system will provide a reference for other researchers who intend to develop
new optimization and parallelization techniques for Intelligent Memory.

References

1. Allen, J. R., Callahan, D., and Kennedy, K.: Automatic decomposition of
scientific programs for parallel execution. In Proceedings of the Fourteenth
Annual ACM Symposium on the Principles of Programming Languages,
Munich, Germany, Jan. (1987)

2. Granacki, J. et al.: Data Intensive Architecture: DIVA.
http://www.isi.edu/asd/diva/, (1998)

3. Huang, W.: Exploiting Application Parallelism Using Advanced Intelligent
Memory – The FlexRAM approach. Ms Thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, (1999)

4. Kuck, D.j.: A survey of parallel mechine organization and programming. ACM
Comput. Surv. 9, 1, Mar. (1977), 29-59

5. Kennedy, K., and McKinley, K. S.: Loop distribution with arbitrary control
flow. In Proceedings of Supercomputing ’90,New York, NY, Nov. (1990)

6. Kogge, P.: The EXECUBE Approach to Massively Parallel Processing. In
proceedings of the 1994 International Conference on Parallel Processing,
August. (1994)

7. Oskin, M., Chong, F., and Sherwood, T.: Active Pages: A Computation Model
for Intelligent Memory. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, pages, June. (1998), 192-203

8. Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis,
C., Tomas, R., and Yelick, K.: A Case for Intelligent DRAM. In IEEE Micro,
March/April (1997), 33-44

9. Veenstra, J., and Fowler, R.: MINT: A Front End for Efficient Simulation of
Shared-Memory Multiprocessors. In MAS-COTS’94, January. (1994), 201-207

10. Kang Y., Huang W., Yoo S., Keen D., Ge Z., Lam V., Pattnaik P., and Torrellas
J.: FlexRAM: Toward an Advanced Intelligent Memory System, International
Conference on Computer Design (ICCD), Austin, Texas, Oct. 1999.

Performance/Energy Efficiency of Variable
Line-Size Caches for Intelligent Memory Systems

Koji Inoue1,2, Koji Kai1, and Kazuaki Murakami3

1 Institute of Systems & Information Technologies/KYUSHU, 2-1-22 Momochihama,
Sawara-ku, Fukuoka 814-0001 Japan

2 Dept. of Computer Science and Comm. Eng., Kyushu University, 6–1 Kasuga-koen,
Kasuga, Fukuoka 816-8580 Japan

3 Dept. of Informatics, Kyushu University, 6–1 Kasuga-koen, Kasuga, Fukuoka
816-8580 Japan

1 Introduction

Integrating main memory (DRAM) and processors into a single chip, or merged
DRAM/logic LSI, makes it possible to exploit high on-chip memory bandwidth
by widening on-chip bus and on-chip DRAM array. In addition, from energy
point of view, the integration brings a significant improvement by decreasing
the number of off-chip accesses.

For merged DRAM/logic LSIs with on-chip cache memory, we can exploit the
high bandwidth by means of replacing a whole cache line at a time. This approach
tends to increase the cache-line size if we attempt to exploit the attainable
high bandwidth. A large cache-line size gives a benefit of prefetching effect if
programs have rich spatial locality. Otherwise, however, it will bring the following
disadvantages due to poor spatial locality:

1. A number of conflict misses will take place due to frequent evictions.
2. As a result, a lot of energy will be wasted for on-chip DRAM (main memory)

due to a number of main memory accesses.
3. Activating the wide on-chip bus and the DRAM array will also dissipate a

lot of energy.

Employing set-associative caches is a conventional approach to solving the first
and second problems, because it can improve cache-hit rates by reducing conflict
misses. However, since increasing the cache associativity increases cache-access
time and energy, it might worsen the performance/energy efficiency of memory
systems. In addition, we still have the third problem.

In order to solve all the problems without any cache-access time and energy
overheads, we have proposed the variable line-size cache (VLS cache) archi-
tecture for merged DRAM/logic LSIs [3] [4]. The VLS cache exploits the high
bandwidth by means of larger cache lines. At the same time, it can alleviate
the negative effects of large cache line by partitioning it into multiple small
cache lines (sublines). Activating only the DRAM subarrays corresponding to
the sublines to be replaced makes a significant energy reduction. In [3] [4], we

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 169–178, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

170 Koji Inoue, Koji Kai, and Kazuaki Murakami

Main Memory

Cache

0 1 2 3
4

(a) Replace with a Minmum Line

Line
32-byte

Subline

(b) Replace with a Medium Line
Main Memory

Cache

0 1 2 3

64-byte Line

Main Memory

Cache

0 1 2 3

(c) Replace with a Maxmum Line

128-byte Line

Legend

data transfer
occurs

no data transfer
occurs

Fig. 1. Mechanism of Variable Line-Size Cache

have discussed only the performance attainable in the VLS cache. This paper
evaluates both the performance and energy improvements achieved by the VLS
cache architecture.

2 Variable Line-Size Cache Architectures

2.1 Concept

In the VLS cache, an SRAM-cell array (cache) and a DRAM-cell array (main
memory) are divided into several subarrays. Data transfer for cache replacements
is performed between corresponding SRAM and DRAM subarrays. A block of
data associated with a single tag in the cache is referred as subline. Line is a
block of data transferred between cache and main-memory for replacements.

Fig. 1 shows the mechanism of variable line-size cache. If programs have rich
spatial locality, a line consists of many sublines and a large number of sublines
would be involved on cache replacements. Contrarily, a few number of sublines
would be replaced when programs have poor spatial locality. In case of Fig. 1, the
cache-line sizes of 32-byte, 64-byte, and 128-byte are provided. Activating the
DRAM subarrays and the on-chip buses corresponding to the replaced sublines
reduces the energy consumed for accessing to the on-chip main memory.

The effectiveness of VLS cache depends on how much the cache can choose
appropriate line sizes (i.e., the number of sublines to be replaced). There are at
least two approaches to the line size optimization: one is a static determination
based on prior analysis; the other is a dynamic determination using hardware
supports.

2.2 Statically Variable Line-Size Cache

The statically variable line-size cache (S-VLS cache) changes its line size program
by program [3]. Application programs are analyzed by using cache simulators
in advance in order to determine an appropriate line size. In case that the S-
VLS cache provides 32-byte, 64-byte, and 128-byte lines, for example, we can

Performance/Energy Efficiency of Variable Line-Size Caches 171

Comparator

reference-flag

Tag

MUX

Main Memory

D-VLS Cache

 Address Load/Store Data

Tag Index

MUX
Hit / Miss?

Data

32Bytes32Bytes 32Bytes 32Bytes

Processor

Line-Size
Determinator

(LSD)

current
line-size

next
line-size

SA Offset

SA : Subarray

for Detection of
the reference-sector

for Detection of
the adjacent-subline

LSS-table

Line-Size
Specifier

(LSS)

Fig. 2. Block Diagram of a Direct-Mapped D-VLS Cache

determine the appropriate line size in the following manner. First, the program
is simulated three times to measure cache-hit rates, each of which assumes one
of fixed 32-byte, 64-byte, and 128-byte line sizes. Then we choose the best line
size as the appropriate line size. The line-size information might be explicitly
designated by a control register.

2.3 Dynamically Variable Line-Size Cache

It may be possible to adopt the static approach explained in Section 2.2 when tar-
get programs have regular access patterns within well-structured loops. However,
a number of programs have non-regular access patterns. In addition, the amount
of spatial locality may vary both within and among program executions. Against
the static approach, the dynamically variable line-size cache (D-VLS cache) se-
lects adequate line sizes based on recently observed data reference behavior at
run time. Fig. 2 illustrates the block diagram of a direct-mapped D-VLS cache
having three line sizes, 32 bytes, 64 bytes, and 128 bytes. The cache has some
hardware components for optimizing the line size. Tag comparison is performed
at each subarray. The details of D-VLS cache behavior and an algorithm opti-
mizing the cache-line size have been described in [4].

172 Koji Inoue, Koji Kai, and Kazuaki Murakami

3 Evaluations

We have evaluated the performance/energy efficiency of on-chip memory systems
employing the following conventional and VLS caches:

– Fix128 and Fix128W2 : 16 KB conventional caches having fixed 128-byte
cache lines. Fix128 is a direct-mapped cache and Fix128W2 is a 2-way set-
associative cache.

– Fix128db : 32 KB conventional direct-mapped cache having fixed 128-byte
cache lines.

– SVLS128-32 and DVLS128-32 : 16 KB direct-mapped variable line-size caches
having 32-byte, 64-byte, and 128-byte cache lines. Line-size optimizations for
them are based on the static approach (SVLS) explained in Section 2.2 and
the dynamic approach(DVLS) explained in Section 2.3, respectively.

We have measured cache-miss rates and line-replacement counts for each model
using benchmark programs: seven integer programs with train input and two
floating-point programs with test input from the SPEC95 benchmark suite. Fur-
thermore, to realize more realistic execution on general purpose processors, a
benchmark set (Mix-IntFp) is used. The programs in the benchmark set are
assumed to run in multiprogram manner on a uni-processor system, and a con-
text switch occurs per execution of one million instructions. Mix-IntFp is formed
by two integer programs and one floating-point program, and three billion in-
structions are executed. All programs are compiled by GNU CC with the “–O2”
option, and are executed on Ultra SPARC workstations. The address traces are
captured by QPT [2]. In this evaluation, we have introduced AMAT (Aver-
age Memory Access Time) and AMAE (Average Memory Access Energy) as
performance and energy metrics of memory systems.

AMAT = TCache + MissRate × 2 × TMainMemory. (1)

AMAE = ECache + MissRate × 2 × EMainMemory. (2)

TCache and ECache are access time and energy consumption for cache, and
TMainMemory and EMainMemory are access time and energy consumption for
main memory, respectively. We have assumed that two main-memory accesses
are performed for a cache replacement (one for write-back and one for cache
refill).

3.1 Cache-Access Time and Energy

The structure of direct-mapped VLS caches having 32-byte, 64-byte, and 128-
byte lines is similar to that of conventional set-associative caches having 32-byte
lines as shown in Fig. 2. In the conventional set-associative cache, the path which
chooses a way based on tag-comparison results determines the cache-access time.
However, that critical path does not appear in the VLS caches because the target

Performance/Energy Efficiency of Variable Line-Size Caches 173

Table 1. Cache-Access Time and Energy

Cache TCache [Tunit] ECache [Eunit]
Fix128 1.000 1.000

Fix128W2 1.470 1.160
Fix128db 1.195 1.838

SVLS128-32 1.000 1.051
DVLS128-32 1.000 1.090

subarray can be chosen regardless of tag-comparison results. Namely, control
signals for the subarray selection are made from the reference address directly.
Therefore, we assume that the cache-access time of direct-mapped VLS caches
(SVLS128-32, DVLS128-32) is the same as that of conventional direct-mapped
cache having same cache size and same associativity (Fix128).

Increasing cache associativity consumes more energy because it increases the
total number of bit-lines, precharging circuits, sense amplifiers, and so on. Sim-
ilarly, increasing the cache size dissipates a lot of energy due to the increase in
bit-line capacitances. On the other hand, the VLS caches do not have this kind
of energy overheads, because the cache size and associativity of Fix128 are main-
tained. The VLS caches need to dissipate the energy for extra tag comparisons;
a tag comparison is performed at each subarray. However, the total number of
bit-lines to be activated for a tag-memory access is much smaller than that for
a data-memory (cache line) access. Therefore, the energy overhead for the extra
tag comparison is small. In addition, although the D-VLS cache needs to read a
2-bit LSS (line-size specifier) and four 1-bit reference flags for run-time line-size
optimization, this energy overhead is also trivial.

To find the cache-access time of each model, we have used the CACTI 2.0
which is the updated version of CACTI model [5] [8]. In addition, we have cal-
culated the cache-access energy for each organization based on Kamble’s model
[6]. We referred the load capacitance of each node defined in [7], which is based
on the 0.8 micron CMOS cache design described in [8]. In this evaluation, we
refer to the cache-access time and cache-access energy of Fix128 as Tunit and
Eunit, respectively. Table 1 summarizes calculation results.

3.2 Cache-Miss Rate

Table 2 shows cache-miss rates on conventional and VLS caches. For some pro-
grams, the VLS caches (SVLS128-32, DVLS128-32) can achieve almost all the
same or lower cache-miss rates than the double-size conventional direct-mapped
cache (Fix128db). However, increasing associativity produces much better results
for many programs. In average, conventional approaches to improving cache per-
formance, increasing cache size (Fix128db) or cache associativity (Fix128W2),
achieve lower cache-miss rates than the VLS caches.

174 Koji Inoue, Koji Kai, and Kazuaki Murakami

Table 2. Cache-Miss Rates

Program Fix128 Fix128W2 Fix128db SVLS128-32 DVLS128-32
099.go 0.1024 0.0695 0.0541 0.0571 0.0638

124.m88ksim 0.0202 0.0045 0.0068 0.0167 0.0153
126.gcc 0.0611 0.0344 0.0349 0.0535 0.0526
130.li 0.0341 0.0203 0.0226 0.0341 0.0358

132.ijpeg 0.0244 0.0048 0.0068 0.0195 0.0175
134.perl 0.0542 0.0230 0.0295 0.0332 0.0286

147.vortex 0.0505 0.0292 0.0307 0.0361 0.0374
101.tomcatv 0.0633 0.0182 0.0546 0.0633 0.0578
104.hydro2d 0.0481 0.0217 0.0259 0.0481 0.0295
Mix-IntFp 0.0597 0.0327 0.0311 0.0452 0.0377

3.3 Main-Memory-Access Time and Energy

The main-memory-access time (TMainMemory) and energy (EMainMemory) de-
pend on the memory size, organization, process technology, and so on. In this
evaluation, we assume that the main-memory-access time including the delay for
data transfer between the cache and the main memory is ten times longer than
the access time of the 16 KB direct-mapped conventional cache having 128-byte
lines (i.e., TMainMemory = 10 × Tunit).

For the main-memory-access energy (EMainMemory), we assume that there
is no energy dissipation for DRAM refresh operations in order to simplify the
evaluation. Thus, for the on-chip memory-path architectures with a conven-
tional cache, energy dissipated for main-memory accesses (i.e., MissRate × 2 ×
EMainMemory) depends only on the total number of main-memory accesses. In
other words, only cache-miss rates affect the main-memory-access energy. On the
other hand, since the VLS caches activate only the DRAM subarrays correspond-
ing to sublines to be replaced, the energy consumed for accessing to the on-chip
main memory depends not only on cache-miss rates but also on line sizes (i.e.,
the number of sublines to be involved in cache replacements). Accordingly, the
main-memory-access energy (EMainMemory) in Equation (2) can be expressed
as follow:

EMainMemory = 10 × Eunit × AverageLineSize

128bytes
. (3)

Here, we assume that the energy dissipated for an access to the 128-byte width
on-chip DRAM is ten times larger than the cache-access energy of Fix128 [1].
The right factor (AverageLineSize

128bytes) in Equation (3) denotes a coefficient which
represents the average number of 32-byte DRAM subarrays activated per cache
replacement. The average line size of conventional caches is 128 bytes, so that
the value of the coefficient is 1. While that of VLS caches depends on the charac-
teristics of programs. For instance, if the average line size is 64 bytes, the value
of the coefficient is 0.5.

Performance/Energy Efficiency of Variable Line-Size Caches 175

Table 3. Average Line Size and Replace Count on VLS caches

S-VLS D-VLS
Program Ave. Line Replace Count Ave. Line

Size [B] 32 [B] 64 [B] 128 [B] Size [B]
099.go 32.00 6,445,160 1,724,674 389,746 42.82

124.m88ksim 64.00 317,746 53,858 68,353 50.83

126.gcc 64.00 10,092,540 3,463,487 1,468,861 48.76

130.li 128.00 1,190,072 426,488 189,570 49.63

132.ijpeg 64.00 3,530,649 1,179,064 1,246,695 58.43

134.perl 32.00 7,987,886 5,250,134 3,849,457 63.46

147.vortex 32.00 19,805,372 3,593,130 1,416,595 42.11

101.tomcatv 128.00 23,539,313 2,608,352 2,650,269 43.73

104.hydro2d 128.00 3,784,227 860,802 6,175,600 89.34

Mix-IntFp 82.60 17,005,515 4,564,846 7,577,526 61.97

Table 3 shows the average line size on the S-VLS cache (SVLS128-32) and
the D-VLS cache (DVLS128-32) for each program. The table also reports the
breakdown of cache-replacement count for each line size in the D-VLS cache, and
the minimum and maximum average cache-line sizes are 42.82 bytes for 099.go
and 89.34 bytes for 104.hydro2d, respectively. For all programs, average line size
of the S-VLS cache is 75 bytes, and that of D-VLS cache is 55 bytes.

Fig. 3 depicts the energy consumed for accessing to the on-chip main mem-
ory (CMR × 2 × EMainMemory). All results are normalized to the memory sys-
tem employing the 16 KB conventional direct-mapped cache having 128-byte
lines (Fix128). Although the cache-miss rates of the VLS caches are higher than
those of the conventional caches (Fix128W2, Fix128db), the VLS caches make

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30

099.go 126.gcc 132.ijpeg 147.vortex
124.m88ksim 130.li 134.perl

Benchmark Programs
101.tomcatv

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Fix128
Fix128W2
Fix128db

SVLS128-32
DVLS128-32

104.hydro2d
Mix-IntFp

Fig. 3. Main-Memory Access Energy (CMR × 2 × EMainMemory)

176 Koji Inoue, Koji Kai, and Kazuaki Murakami

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

099.go 126.gcc 132.ijpeg 147.vortex
124.m88ksim 130.li 134.perl

A
ve

. M
em

or
y

A
cc

es
s

T
im

e
[T

un
it]

TCache

104.hydro2d
Mix-IntFp101.tomcatv

CMR*2*TMainMemory
Fix128
Fix128W2
Fix128db

SVLS128-32
DVLS128-32

(A) Average Memory Access Time

099.go 126.gcc 132.ijpeg 147.vortex
124.m88ksim 130.li 134.perl

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

104.hydro2d
Mix-IntFp101.tomcatv

CMR*2*EMainMemory

A
ve

. M
em

or
y

A
cc

es
s

E
ne

rg
y

[E
un

it]

Fix128
Fix128W2
Fix128db

SVLS128-32
DVLS128-32

(B) Average Memory Access Energy

ECache

Fig. 4. Average Memory Access Time and Energy

significant advantages of energy reduction by reducing both the total number of
main-memory accesses and that of DRAM subarrays activated. For Mix-IntFp,
the D-VLS cache (DVLS128-32) produces about 70 % main-memory energy re-
duction from the base organization (Fix128), which is about 20 % better than
the low-miss-rate conventional caches (Fix128W2, Fix128db).

3.4 Performance/Energy Efficiency

Fig. 4 (A) shows the performance (AMAT) of each memory system in case that
the access time of on-chip DRAM is ten times longer than Tunit. Increasing asso-
ciativity improves cache-miss rates. However, Fix128W2 does not produce good
result for some programs due to the cache-access-time overhead. On the other
hand, the VLS caches can maintain the fast access of direct mapping. Thus, in
all programs except for 101.tomcatv, the VLS caches make significant perfor-
mance improvements, which are comparable with the doubled size conventional
direct-mapped cache (Fix128db).

Fig. 4 (B) shows energy consumption (AMAE) of each memory system in
case that the energy consumed for accessing to on-chip DRAM is ten times

Performance/Energy Efficiency of Variable Line-Size Caches 177

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

099.go 126.gcc 132.ijpeg 147.vortex
124.m88ksim 130.li 134.perl

N
or

m
al

iz
ed

 E
D

 P
ro

du
ct

 [A
M

A
E

 *
 A

M
A

T
]

104.hydro2d
Mix-IntFp101.tomcatv

Fix128
Fix128W2
Fix128db

SVLS128-32
DVLS128-32

Fig. 5. Energy Delay Products (AMAT × AMAE)

larger than Eunit. The conventional approaches to improving cache performance
(Fix128W2, Fix128db) reduce cache-miss rates, so that the main-memory-access
energy is reduced from the base organization (Fix128). However, Fix128db de-
grades the total energy efficiency because the cache-access energy is large. In
conventional caches, Fix128W2 produces the best results for all programs. On
the other hand, the VLS caches can make energy reductions for main-memory ac-
cesses by improving cache-hit rates and by activating on-chip DRAM subararys
selectively without large cache-access-energy overhead. Thus, the VLS caches
make significant energy reductions. In particular, the D-VLS cache (DVLS128-
32) achieves lower energy for all programs than Fix128W2 which is the best
organization of conventional approaches.

Finally, in Fig. 5, we show the energy-delay product to evaluate the perfor-
mance and energy at the same time. For each program, all results are normalized
to Fix128. In conventional caches, the performance improvement achieved by in-
creasing cache size (Fix128db) is negated by the large energy dissipation. Con-
trarily, energy improvement produced by increasing associativity (Fix128W2) is
negated by low-performance due to long cache-access time. The VLS caches do
not have this kind of negations because they can produce both the performance
and energy improvements. In the best case of 099.go, the VLS caches reduce
the energy-delay product more than 60 % from the conventional direct-mapped
cache (Fix128). While the reductions produced by conventional approaches, in-
creasing cache associativity or cache size, are from 20 % to 30 %.

4 Conclusions

In this paper, we have described the variable line-size cache (VLS cache), which
is a novel cache architecture suitable for merged DRAM/logic LSIs. To eval-
uate the performance/energy efficiency of the VLS caches, we have simulated

178 Koji Inoue, Koji Kai, and Kazuaki Murakami

many benchmark programs on the VLS caches and on conventional caches. In
the simulation results for Mix-IntFp benchmark set which includes two integer
programs and one floating-point program, it is observed that a statically VLS
cache and a dynamically VLS cache reduce the energy-delay product by 35 %
and 47 %, respectively, compared to a conventional cache having the same cache
size and the same associativity.

Employing merged DRAM/logic LSIs is one of the most important approaches
for future computer systems, because it can achieve high-performance and low-
power at the same time by eliminating the chip boundary between the processor
and main memory. We can obtain more improvement of performance/energy ef-
ficiency by exploiting the attainable high on-chip memory bandwidth effectively.
The VLS cache architecture is applicable to any merged DRAM/logic LSIs. In
particular, the dynamically VLS cache is more promising. Because it does not
require any modification of instruction set architectures, the full compatibility
of existing object codes can be kept.

References

1. Fromm, R., Perissakis, S., Cardwell, N., Kozyrakis, C., McGaughy, B., Patterson, D.,
Anderson, T., and Yelick, K., “The Energy Efficiency of IRAM Architectures,” Proc.
of the 24rd Annual International Symposium on Computer Architecture, pp.327–337,
May 1997.

2. Hill, M. D., Larus, J. R., Lebeck, A. R., Talluri, M., and Wood, D. A.,
“WARTS: Wisconsin Architectural Research Tool Set,” http://www.cs.wisc.edu/
l̃arus/warts.html, University of Wisconsin - Madison.

3. Inoue, K., Koji, K., and Murakami, K., “High Bandwidth, Variable Line-Size Cache
Architecture for Merged DRAM/Logic LSIs,” IEICE Transactions on Electronics,
Vol.E81-C, No.9, pp.1438–1447, Sep. 1998.

4. Inoue, K., Kai, K., and Murakami, K., “Dynamically Variable Line-Size Cache Ex-
ploiting High On-Chip Memory Bandwidth of Merged DRAM/Logic LSIs,” Porc.
of the 5th International Symposium on High-Performance Computer Architecture,
pp.218–222, Jan. 1999.

5. Jouppi, P. N., http://www.research.digital.com/wrl/people/jouppi/CACTI.html
6. Kamble, M. B., and Ghose, K., “Analytical Energy Dissipation Models For Low

Power Caches,” Proc. of the 1997 International Symposium on Low Power Elec-
tronics and Design, pp.143–148, Aug. 1997.

7. Kamble, M. B., and Ghose, K., “Energy-Efficiency of VLSI Caches: A Comparative
Study,” Proc. of the 10th International Conference on VLSI Design, pp.216–267,
Jan. 1997.

8. Wilton, S. J. E., and Jouppi, N. P., “An Enhanced Access and Cycle Time Model
for On-Chip Caches,” Digital WRL Research Report 93/5, July 1994.

The DIVA Emulator:

Accelerating Architecture

Studies for PIM-Based

Systems

Jeff La Coss1

University of Southern California
Information Sciences Institute

1 Introduction

DIVA (Data IntensiVe Architecture), employs Embedded DRAM (EDRAM) technolo-
gy [Iyer99] to overcome memory bandwidth limitations by tightly coupling a single
processor to a large on-chip storage array to produce a device capable of dual roles as
system “smart” and “dumb” memory. Communication between “nodes” (processor-
memory pairs) occurs on a special chip-to-chip interconnect, off-loading the system
memory bus. Coarse-grain parallelism may be further extended by implementing mul-
tiple processor-memory “nodes” per PIM chip. The DIVA system will employ PIMs in
a workstation “smart memory” system capable of large amounts of processing.

The DIVA emulator is a programmable logic resource for accelerating detailed evalua-
tion of PIM architecture. Based on commercial FPGAs, the emulated logic model di-
rectly executes code at least 50 times faster, and at much finer granularity, than our sim-
ulator. As a result. the emulator provides a platform for early development of system
software and evaluation of algorithms that exploit the fine-grain parallelism available
in DIVA PIMs.

1.1 Overview of DIVA System Architecture
Figure 1 shows the major control and data connections within a processor-memory
node. Information flows into and out of the node via the communication port or the host
memory port. The heart of the DIVA node is a wide data bus used for all transfers be-
tween major functional units. Arbitration between the host and the node adds insignif-
icant delay to the host memory access time when the PIMs are used as conventional
memory.

Node processing logic consists of an execution control pipeline to coordinate the activ-
ity of a standard 32-bit integer scalar datapath (registers plus ALU), a 64-bit floating
point datapath, and a special 256-bit WideWord datapath that processes data at the

1. Author’s address: University of Southern California Information Sciences Institute.
4676 Admiralty Way, Suite 1001, Marina Del Rey CA 90292 USA.
email jlacoss@isi.edu, WWW: http://www.isi.edu/~jlacoss

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 179–182, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

180 Jeff La Coss

memory bandwidth. Register-register moves between datapaths are supported for effi-
cient interaction between different types of processing. The execution control pipeline,
scalar datapath, and floating point datapath may be viewed as a conventional micro-
processor and can be programmed as such, enabling evolutionary software develop-
ment. Users may also exploit coarse-grain parallelism offered by the PIMs by simply
programming multiple nodes in a conventional sense. However, users may also exploit
fine-grain parallelism by using the WideWord datapath. Further DIVA architectural de-
tails can be found in [Hall99].

1.2 Simulation
Several forms of software simulation are well known. High-level simulators mimic sys-
tem behavior, but deliver information at the input/output level only. Register-transfer-
level simulators maintain state information for the functional modules used in a system.
Gate-level simulators use very fine-grain models to describe the system at the lowest
level of detail - the logic gates used to implement major units. This 1:1 mapping be-
tween model and target, or fidelity, minimizes the chance of error during physical sys-
tem design and implementation. Unfortunately, the computing power needed to execute
such simulations and manage required information stresses the capabilities of advanced
workstations, resulting in very long simulation times. DSIM, the DIVA simulator de-
rived from RSIM, executes approximately twenty-five thousand instructions per second
on a SUN Ultra20 workstation. The need for efficient system verification justifies the
cost of developing of specialized hardware emulators.

1.3 Emulation
Emulation models systems in hardware quite different from the target implementation.
Emulators based on reprogrammable logic devices allow new logic configurations to be
assessed on a single platform. Reconfigurable application-specific computing can be
considered an extreme case of emulation: features of a computation - hardware and soft-
ware - not required by a given application are optimized away during the compilation
process. The most accurate type of emulation is gate-level, which provides a hardware

PIM-PIM Communication Port

Execution
Control Unit

WideWord ALU

Floating-Point Unit

Instruction
Cache

Embedded
DRAM
Array

Memory Ctl
& Arbiter

Host Memory Port

Scalar ALU

Register
Files

Fig. 1: DIVA PIM Node Organization

Message Control

256-bit data

Data Requests

Accelerating Architecture Studies for PIM-Based Systems 181

model for each fine-grain logic element to rapidly execute the desired functions of the
anticipated system. There are drawbacks to this high-fidelity approach, however, as
very large amounts of reconfigurable hardware resources can be required. EETimes
published an account where the first Intel Pentium was emulated with a reconfigurable
platform that required 100 square feet of floor space.

2 The DIVA Emulator

The DIVA emulator mimics the behavior of the DIVA VLSI PIM node at a moderate
clock rate (up to ten million instructions per second). Some tradeoffs are required be-
cause the Xilinx “Virtex” FPGA devices do not provide a substrate of “gates” for con-
structing logic, meaning the emulation must sacrifice some fine-grain fidelity. Original-
ly intended to model four nodes, the current version supports a maximum of two be-
cause the WideWord (256-bit) datapath logic consumes FPGA resources, requiring the
node processor to be partitioned across multiple devices. However, per-clock fidelity is
maintained, so that at each user-visible time marker all state information available to the
debugging support environment is indistinguishable from that of the anticipated VLSI
device. This fidelity ensures that program code compiled for the VLSI PIM will run and
produce identical results on the emulator hardware, giving architects a platform for rap-
idly evaluating design trade-offs.

2.1 Physical Implementation
The DIVA emulator is implemented on a full-size PCI card and mezzanine board. These
boards contain all logic required for system bus interface, power conversion and mon-
itoring circuits, as well as FPGAs with dedicated DRAM and SRAM to support emula-
tion of complex circuits of up to several million gates.

Circuit topology is constrained by printed-circuit interconnect, physical packaging of
the commercial devices, and pin limitations of the FPGAs. DRAM is implemented as
64 bit words per FPGA, requiring WideWord memory accesses to be emulated by quad-
word read and write operations. These are controlled by “microstates,” invisible to the
user, within the instruction clock cycle. Microstates also define the protocol used to pass
data between the FPGAs of the emulator: at different points in time, instructions, scalar
(32-bit) data, and WideWord ALU condition codes are transmitted over the limited in-
terconnect available for this communication.

As shown in Figure 2, the emulator board has ports for the PIM-to-PIM communication
channels, enabling emulation of PIM arrays. The communication logic is emulated sep-
arately from node logic. The narrow paths between FPGAs also require use of micro-
states to mimic single-clock PIM communication events. The emulator also has a port
for a host memory bus interface. The goal of this feature is to use the emulator in situ
with the host system, operating as a very slow DRAM. The implementation of these in-
terfaces is pending.

182 Jeff La Coss

2.2 Operation
Users develop a logic description in VHDL, compile it, and load the resulting configu-
ration file into the emulators FPGAs via a Linux user interface. This software also pro-
vides the user with direct fine-grain control and monitoring of the logic embedded in
the FPGAs. A well-understood DSP application has been demonstrated and is used as
a benchmark to evaluate changes to the user interface as well as determine emulator per-
formance.

3 Summary and Conclusion

This paper describes the DIVA PIM hardware emulator, designed to evaluate architec-
tural features of a new PIM smart-memory coprocessor for a conventional host system.
We briefly describe the target architecture, the emulator platform and system support
software, and an example of applications run on the emulated logic. With the emulator
running at an extreme worst-case speed of one million instructions per second, we
achieve execution speedup factors over fifty at a level of detail unapproachable by soft-
ware simulation techniques.

The DIVA emulator is a work in progress, with new logic functions being added on a
regular basis. The evaluation environment runs several large-scale application exploit-
ing processing with the wide datapaths. In the future, we also plan to implement IEEE
32- and 64-bit floating point operation.

4 References

[Hall99] Mapping Irregular Applications to DIVA, A PIM-based Data-Intensive
Architecture. M. Hall, et al. Supercomputing 99.

[Iyer99] Embedded DRAM technology: opportunities and challenges . Iyer,
Subramanian and Howard Kalter, IEEE Spectrum Apr. 1999.

[RSIM] http://www-ece.rice.edu/~RSIM

SRAM
256k x 38b

FPGA
Virtex 2000e

DRAM
16M x 64b

SRAM
256k x 38b

FPGA
Virtex 2000e

DRAM
16M x 64b

SRAM
256k x 38b

FPGA
Virtex 2000e

DRAM
16M x 64bSRAM

256k x 38b

FPGA
Virtex 2000e

DRAM
16M x 64b

Host
PCI

Interface

µµµµController
& Decode

H
O

S
T

 M
em

or
y

In
te

rf
ac

e

Power
Converter

Figure 2: DIVA Emulator Implementation

Mezz.
board

40b180b

Host Memory &
Communication

Interface
Logic

PIM-PIM
Comm. Ports

Compiler–Directed Cache Line Size Adaptivity �

Dan Nicolaescu1, Xiaomei Ji1, Alexander Veidenbaum1, Alexandru Nicolau1,
and Rajesh Gupta1

Department of Information and Computer Science
444 Computer Science, Building 302

University of California Irvine
Irvine, CA 92697–3425

{dann,xji,alexv,nicolau,rgupta}@ics.uci.edu

Abstract. The performance of a computer system is highly dependent
on the performance of the cache memory system. The traditional cache
memory system has an organization with a line size that is fixed at
design time. Miss rates for different applications can be improved if the
line size could be adjusted dynamically at run time. We propose a system
where the compiler can set the cache line size for different portions of the
program and we show that the miss rate is greatly reduced as a result of
this dynamic resizing.

1 Introduction

The area available for on–chip caches is limited and the size and associativity of
a cache for a given processor cannot be significantly increased without causing
an increase in the cycle time. Currently in a given technology implementation
processor designers decide the size of cache lines by considering different tradeoffs
between speed and latency. But this tradeoff also influences the miss rate of the
cache system. We show that this decision has a great impact on the miss rate of
the memory system.

We propose a simple system that allows the cache line size to vary at run
time. To achieve this we augment the ISA with a single extra instruction that
sets the line size. A compiler can insert this instruction in the code at points it
determines suitable by either static code analysis or profile–directed feedback.

While the hardware modifications are modest, the following questions need
to be answered to determine the feasibility of the approach:

1. When should the cache line size be changed,
2. How often is it necessary to reconfigure,
3. What is the optimal reconfiguration policy?

On one hand it would not be feasible to change the cache line size every few
instructions as the overhead associated with such reconfiguration would make
� This work was supported in part by the DARPA ITO under Grant DABT63-98-C-

0045.

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 183–187, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

184 Dan Nicolaescu et al.

the approach prohibitively expensive. On the other hand if we reconfigure too
infrequently, e.g. once per function call, we might miss some optimization oppor-
tunities because a function may contain a number of loops, each of them with a
distinct cache behavior.

It has been shown that the majority of dynamic instructions in a program
are executed in innermost loops. An inner loop is also likely to have reasonably
stable spatial/temporal locality characteristics. This suggests that an inner loop
may be a good place to change the cache line size and maintain the setting for
the duration of such a loop. In this paper we study the performance of changing
the cache line size at loop level and show that such an approach is feasible.

We currently use a profile–based mechanism for the control of adaptation
by the compiler. Future work will study the opportunity to use compile–time
analysis for making adaptivity decisions.

2 System Organization

The system being studied consists of a 3–level memory hierarchy. The cache line
size is reconfigurable at run time using a special instruction. The set of sizes is:
8, 16, 32, 64, 128 and 256 bytes. A fully associative write buffer is also used.

The L1 cache is direct mapped and the hit latency is assumed to be 1 cycle.
The L1 bus transfer takes 2 cycles. L2 is a 2–way set–associative with the access
latency of 15 cycles. The main memory access latency is 100 cycles.

3 Experimental Infrastructure

3.1 Simulator

The framework provided by the ABSS [2] simulation system is used in this study.
ABSS is a simulator that runs on SUN Sparc systems and is derived from the
MINT simulator [3].

The ABSS simulator consists of 5 parts: augmentor, thread management,
cycle-counting libraries, user-defined simulator of the memory system and the
application program.

The augmentor program (called doctor) parses the original application as-
sembly code, and adds instrumentation code that sends information about the
loads and stores executed by the program to the simulator.

Our custom memory architecture simulator simulates a 3–level memory hi-
erarchy, the cache line for the L1 cache is changeable at run time via commands
embedded in the simulated program.

3.2 Compilation

We have used version 2.95 of the GCC compiler collection to conduct all the
experiments. The compiler back–end was modified to emit special code sequences
before entering a loop, or on the code path for exiting a loop. Given that the

Compiler–Directed Cache Line Size Adaptivity 185

compiler back–end is common to the C and Fortran77 compiler we were able to
use this instrumentation for compiling all the SPEC95 benchmarks.

The code sequences were used for adjusting the cache line size, and for col-
lecting statistics and identifying the loop (source file name and line number),
and signaling to the cache simulator that a loop is being entered or exited.

All the benchmarks where compiled using the -O2 optimization flag, the
target instruction set was SPARC V8plus.

4 Experiments

We have run the simulations for a memory system using different cache line sizes.

0

10

20

30

40

50

60

70

80

compress ijpeg m88ksim fpppp su2cor swim tomcatv turb3d

8B 16B 32B 64B 128B 256B

Fig. 1. L1 miss rate for the loop containing the most memory references.

The results shown in Figure 1 are miss rate for the loop that contains the
most memory references for each benchmark is shown. It can be observed that
no individual cache line size gets the minimum miss rate for all benchmarks, and
that there is no rule for all benchmarks that could determine the optimal cache
line size.

Figure 2 shows that even for the same benchmark, different loops have better
miss rates for different cache line sizes. Based on these two fact we can conjecture
that adapting the line size on loop boundaries improves the miss rate.

We used profiling to determine the best cache line size for each loop, we run
the benchmarks using the training input set, determined for each loop what is
the cache line size that generates the minimum miss rate and used that data
to run the benchmarks using a compiler generated instruction to change the
cache line size to the one that was determined to generate the minimum number
of misses. This approach is practical since we have determined that the data

186 Dan Nicolaescu et al.

0

10

20

30

40

50

60

1 2 3 4

8B 16B 32B 64B 128B 256B

Fig. 2. L1 miss rate for the loops that generate most memory references for the com-
press benchmark

obtained using the small, manageable training input sets extrapolates well to
the actual application. The results are shown in Figure 3. It can be seen that
the miss rate always improves, sometimes by a wide margin.

Another interesting observation can be made from Figure 3. The “worst case”
data is obtained by using the profile data for setting the line size in such way
to maximize the miss rate. It can be observed that this worst case is in all cases
very close to the miss rate for at least one of fixed line sizes. So it is likely that
for about any fixed line size there will exist an application that will have a very
high miss rate, therefore cache line size adaptability is a worthwhile feature for
a general purpose processor that has to run well a variety of applications.

5 Conclusions and Future Work

We have shown that adapting the cache line size on a per loop basis improves
the cache miss rate. We have used a profile base approach, future work will
determine the cache line size at compile time using analytical approaches and
we are also working on using hardware based approaches to dynamically change
the cache line size.

References

1. Teresa L. Johnson and Wen mei Hwu. Run-time adaptive cache hierarchy man-
agement via reference analysis. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997.

2. D. Sunada, D. Glasco, and M. Flynn. ABSS v2.0: SPARC simulator. Technical
Report CSL-TR-98-755, Stanford University, 1998.

Compiler–Directed Cache Line Size Adaptivity 187

0

10

20

30

40

50

60

70

80

compress ijpeg m88ksim fpppp su2cor swim tomcatv turb3d

8B 16B 32B 64B 128B 256B adaptive line worst case

Fig. 3. L1 miss rate for different cache line sizes, and for an adaptive cache

3. Jack E. Veenstra and Robert J. Fowler. Mint: A front end for efficient simulation
of shared-memory multiprocessors. In Intl. Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pages 201–207, 1994.

4. Alexander V. Veidenbaum, Weiyu Tang, Rajesh Gupta, Alexandru Nicolau, and
Xiaomei Ji. Adapting cache line size to application behavior. In Proceedings ICS’99,
June 1999.

5. Peter Van Vleet, Eric Anderson, Lindsay Brown, Jean-Loup Baer, and Anna Karlin.
Pursuing the performance potential of dynamic cache line sizes. In Proceedings of
1999 International Conference on Computer Design, November 1999.

Summary of Question/Answer Sessions for
Workshop Presentations

Workshop Notes

These notes summarize the question and answer sessions held after each
presentation. They are a combined collection of notes from Mark Oskin and
Frederic T. Chong.

1 Memory Technology

Embedded DRAM: Technology and Challenges
Subramanian S. Iyer, IBM Microelectronics

The DRAM process lags about two generations in performance and one gen-
eration in density over logic processes. The IBM embedded-DRAM (eDRAM)
cell is 1.3X the size of conventional DRAM but the overall area of conven-
tional DRAM is greater due to lower drive. Consequently, as a rough approxi-
mation it is the same size. DRAM storage devices are not scaled with process
technology. Using the IBM eDRAM process costs about 20-25% more than a
conventional DRAM process. There is a lower device yield due to MDL. Cer-
tain areas, such as the network processor market may benefit from a better
cost-performance target, even though the integration cost of using eDRAM
is increased. The access time to on-chip eDRAM is about 4.2ns, which is
approaching the access time of SRAM. Finally, while there is some variety
in the DRAM macro blocks, most customers use only one or two types.

A 64MBit Mesochronous Hybrid Wave Pipelined Multibank DRAM
Macro
Junji Ogawa and Mark Horowitz, Stanford University

Using the 0.18um commodity process, a 1-2MBit size DRAM macro block
is optimal. The area overhead of the hybrid scheme is only about 2%.

Software controlled Reconfigurable On-chip Memory for High Perfor-
mance Computing
Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku, University of Tokyo, and
the University of Tsukuba.

The Quantum Chromo-Dynamics (QCD) application assumed 1MB of on-
chip memory. The CG application from the NAS parallel benchmarks was
not a major contributor to the overall performance. The configuration of the
on-chip memory is not altered during application execution due to the high
reconfiguration cost.

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 188–191, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Workshop Notes 189

2 Processor and Memory Architecture

Content-based Prefetching: Initial Results
Robert Cooksey, Dennis Colarelli and Dirk Grunwald, University of Colorado

Coverage is “low” on synthetic, and even lower for real data. It is an open is-
sue on whether this is a problem or not. On the Olden benchmarks, the stride
prefetcher worked best. John Carter points out that quad tree prefetching
performs well, but you have to try and avoid wasting bandwidth.

Memory System support for Dynamic Cache Line Assembly Lixin
Zhang, Venkata K. Pingali, Bharat Chandramouli and John B. Carter, Uni-
versity of Utah

The pages are not pinned. The mapping can be altered at runtime. The
SDRAM timing was extensively modeled in detail.

Adaptively Mapping Code in an Intelligent Memory Architecture
Yan Solihin, Jaejin Lee, and Joseph Torrellas, University of Illinois at Urbana-
Champaign, Michigan State University and Los Alamos National Laboratory

The “ideal” configuration is ideal for the P-MEM system or P-PROC, but
not for a system that dynamically switches between the two.

3 Applications and Operating Systems

Blue Gene
Marc Snir, IBM

The target clock rate for the on-chip logic was 500mhz. While running, the
machine has 18 million threads, 46,000 chips, and consumes 2MW of power.
A single processor contains 512K of DRAM and is about 20 square millime-
ters in size. Communication between processors is done via polling. The code
size is in the 10k range with only selective porting of the runtime environ-
ment. Code is replicated on every chip. The data access bandwidth per-chip
is on the order of 100 Gbytes. It was found that the 3D mesh configuration
has sufficient bandwidth for the applications, and communication becomes
latency bound.

190 Workshop Notes

The Characterization of Data Intensive Memory Workloads on Dis-
tributed PIM Systems
Richard C. Murphy, Peter M. Kogge and Arun Rodrigues, University of Notre
Dame

Empty bits are used to support writable objects. The application thread
is responsible for returning the PIM and/or flushing data back. Thrash-
ing between threads was not found to be a problem – the address window
experiments demonstrate this. The thread stack is relatively small (a few
words). Currently, data is migrated by pulling data over once a thread has
been moved. Current work is looking at taking a small cache along with
the thread to further improve performance. Past research has nottried to
increase the number of registers to counteract the data migration issues.

Memory Management in a PIM-based Architecture
Mary Hall and Craig Steele, USC Information Sciences Institute

Multi-tasking is supported by “space sharing”. Allocations are done on PIM
level blocks. The global address space on the PIMs is specific to one par-
ticular process on the host. Current work is adapting Linux to be the host
operating system. Operating system support executing in the PIM is min-
imal: buffer management, network management and thread scheduling is
done on chip without host processor intervention. Large-scale allocation of
memory is coordinated with the host OS. A small scale OS is on-chip for
management of the heap, stack, etc. Predefined global segments is handled
by the PIM node miniature OS independently.

4 Compiler Technology

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler
David Judd, Katherine Yelick, Christoforos Kozyrakis, David Martin, and David
A. Patterson, University of California at Berkeley

There are no issues with data alignment within a bank, unlike MMX instruc-
tions. A benefit to virtualizing the hardware is that one does not have to
change the compiler every time they change the hardware. It is speculated
that a different approach would be to make the compiler parameter driven
due to the regularity of the architecture. In VIRAM the software specifies
the maximum available parallelism that is found, and then leaves it up to the
hardware to use that information. The limitation on the number of address
registers is arbitrary, but was chosen because such devices take up a lot of
area. The compiler maintains memory consistency. Usually the vector unit
is running behind the scalar unit because the vector unit is deeply pipelined.
Where there is interaction between the vector and scalar units a memory
barrier must be implemented. The most expensive is the scalar after vec-
tor memory barrier. Conditional bits, as they are used in VLIW processors,
don’t come much into play with the multimedia applications studied thus
far.

Workshop Notes 191

FlexCache: A Framework for Flexible Compiler Generated Data Caching
Csaba Andras Moritz, Matthew Frank, and Saman Amarasinghe, University of
Massachusetts, and Massachusetts Institute of Technology

Without FlexCache ISA support, the instruction stream is polluted, with 4
extra instructions for every single memory instruction. With ISA extension
there is no affect on the instruction cache. Currently, results assume all loads
go to the software cache. Future work will explore mixing a conventional and
a FlexCache. The TLB mechanisms are not implemented. Alias analysis for
pointers is very precise, and current work has not looked at relaxing this.
The model implements a check so even if incorrect alias analysis happens
the model still works.

5 Open microphone

Konrad Lai (Intel)
Processors are quickly reaching the limits of power density. Memory has
lower power density than computational logic. Memory requirements are
logarithmic over years. On-chip cache will dominate chip area of future mi-
croprocessors – but is there a better way? Even though the processor is only
a small percent of the total area, it still consumes 90% of the power. The
point is that from a power perspective you are going to have a lot of memory
transistors due to power density problems. DRAM has a lower power con-
sumption per mm2 (lower PDA) due to multiple voltages, worse transistors,
etc. (Most power consumption is in the sense-amplifiers and not in the bit
array). The difference between DRAM/logic power consumption is 10x, even
with high use 5x. Should one spread logic around to lower PDA hot spots?
Perhaps implement more logic but not use it all the time?

Author Index

Amarasinghe, Saman, 135

Boku, Taisuke, 15

Carter, John B., 56
Chandramouli, Bharat, 56
Chu, Slo-Li, 160
Colarelli, Dennis, 33
Cooksey, Robert, 33

Dutt, Nikil, 147

Frank, Matthew I., 135

Grun, Peter, 147
Grunwald, Dirk, 33
Gupta, Rajesh, 183

Hall, Mary, 104
Horowitz, Mark, 1
Huang, Michael, 152
Huang, Tsung-Chuan, 160

Inoue, Koji, 169

Ji, Xiaomei, 183
Judd, David, 122

Kai, Koji, 169
Kogge, Peter M., 85
Kondo, Masaaki, 15
Kozyrakis, Christoforos, 122

LaCoss, Jeff, 179
Lee, Jaejin, 71

Martin, David, 122
Moritz, Csaba Andras, 135
Murakami, Kazuaki, 169
Murphy, Richard C., 85

Nakamura, Hiroshi, 15
Nicolaescu, Dan, 183
Nicolau, Alexandru, 147, 183

Ogawa, Junji, 1

Patterson, David, 122
Pingali, Venkata K., 56

Renau, Jose, 152
Rodrigues, Arun, 85

Solihin, Yan, 71
Steele, Craig, 104

Torrellas, Josep, 71, 152

Veidenbaum, Alexander, 183

Yelick, Katherine, 122
Yoo, Seung-Moon, 152

Zhang, Lixin, 56

	Intelligent Memory Systems
	Preface
	Table of Contents
	A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank DRAM Macro
	1. Introduction
	2. Concept of the Hybrid Wave Pipeline
	3. Analysis of Latency and Cost of Multi-banked DRAM
	4. Data Bus Design Options
	4-1. Fully Synchronous and Asynchronous Bus
	4-2. Hybrid Scheme Based on Dedicated Clock Wave-Pipeline
	4-3. Hybrid Circuit and Stage Operation
	4-4. Comparison of Bandwidth and Latency
	4-5. Taking Advantage of the Latency Difference between Banks

	5. Embedded Macro Architecture
	5-1. 64Mbit Macro Architecture
	5-2. Four-Tile Configuration on a Single Chip

	6. Conclusion
	7. Acknowledgements
	References

	Software Controlled Reconfigurable On-Chip Memory for High Performance Computing
	1 Introduction
	2 SCIMA
	2.1 Overview
	2.2 Address Space
	2.3 Data Transfer Among Memory Hierarchy
	2.4 Recon.guration of On-Chip Memory and Cache
	2.5 Other Architectural Issues
	2.6 Benefit of On-Chip Memory

	3 Optimization of Benchmarks
	3.1 NPB Kernel CG
	3.2 NPB Kernel FT
	3.3 QCD Computation

	4 Performance Evaluation
	4.1 Evaluation Environment
	4.2 Assumptions for the Evaluation
	4.3 Classification of Execution Cycles

	5 Evaluation Result
	5.1 Result
	5.2 Discussion

	6 Related Works
	7 Concluding Remarks
	Acknowledgment
	References

	Content-Based Prefetching: Initial Results
	1 Introduction
	1.1 Overview

	2 Proposed Prefetching Scheme
	2.1 Brief Overview
	2.2 Trigger Mechanism
	2.3 Prediction Mechanism
	2.4 Recursive Scan
	2.5 Data Movement

	3 Workload Characteristics
	3.1 Synthetic Benchmark
	3.2 Olden Benchmark Suite
	3.3 Summary

	4 Preliminary Results
	4.1 Metrics
	4.2 Simple Memory Model
	4.3 Synthetic Benchmark
	4.4 Olden Benchmarks
	4.5 Prefetch Distances

	5 Related Work
	5.1 Software Based Prefetching
	5.2 Hardware Based Prefetching
	5.3 Hybrid Prefetching

	6 Conclusions and Future Work
	References

	Memory System Support for Dynamic Cache Line Assembly
	1 Introduction
	2 Related Work
	3 Impulse Architecture
	4 Design
	4.1 Scatter/Gather through An Indirection Vector
	4.2 Dynamic Cache Line Assembly

	5 Performance Evaluation
	5.1 Simulation Environment
	5.2 Results

	6 Conclusions and Future Work
	References

	Adaptively Mapping Code in an Intelligent Memory Architecture
	1 Introduction
	2 Intelligent Memory Architecture
	3 Modulles and Partitioning
	4 Adaptive & Overlapped Execution
	5 Evaluation Setup
	6 Evaluation Results
	7 Conclusions
	8 Acknowledgements
	References

	The Characterization of Data Intensive Memory Workloads on Distributed PIM Systems
	1 Introduction and Motivation
	2 Benchmarks
	3 PIM Technology and Architecture
	4 Simulation Methodology
	5 Metrics
	6 Working Set Critical Mass
	6.1 Caches
	6.2 Paged Memory

	7 Mobile Threads
	7.1 Execution Model
	7.2 Data Layout
	7.3 Run Length Experimentation
	7.4 Look-Back Reference Results

	8 Conclusions and Future Work
	References

	Memory Management in a PIM-Based Architecture
	1 Introduction
	2 Overview of Memory Model and Addres Translation
	2.1 Address Translation for Locally Mapped Data
	2.2 Translating Remote Addresses
	2.3 Parcels

	3 Overview of Memory Management
	4 Memory Allocation: Virtual vs. Physical
	4.1 Virtual Memory Allocation
	4.2 Physical Memory Allocation
	4.3 Mapping Existing Objects to PIM Global Segments

	5 Paging
	6 Contexts and Swapping
	6.1 Contents of Context
	6.2 Swapping

	7 Local and Global Segments
	7.1 Large Global Segments
	7.2 Assigning Names to Global Segments
	7.3 Sharing Global Segments across PIMs

	8 Summary and Conclusion
	References

	Exploiting On-Chip Memory Bandwidth in the VIRAM Compiler
	1 Introduction
	2 Overview of the VIRAM Architecture
	2.1 The Instruction Set
	2.2 The VIRAM Processor

	3 Compiler Overview
	4 On-chip Memory Bandwidth
	5 Narrow Data Types
	6 Related Work
	7 Conclusions
	References

	FlexCache: A Framework for Flexible Compiler Generated Data Caching
	1 Introduction
	2 FlexCache Runtime System
	3 FlexCache Compiler
	5 Experiments
	6 Conclusions and Future Work
	References

	Aggressive Memory-Aware Compilation
	1 Introduction
	2 Related Work
	References

	Energy/Performance Design of Memory Hierarchies for Processor-in-Memory Chips
	1 Introduction
	2 Memory Hierarchies for PIM Chips
	3 Evaluation Environment
	4 Evaluation
	5 Discussion
	References

	SAGE: A New Analysis and Optimization System for FlexRAM Architecture
	1 Introduction
	2 Intelligent Memory Architecture
	3 System Organization
	3.1 Statement Splitting
	3.2 Wavefront Generating and Scheduling

	4 Example
	5 Experimental Results
	6 Conclusion
	References

	Performance/Energy Efficiency of Variable Line-Size Caches for Intelligent Memory Systems
	1 Introduction
	2 Variable Line-Size Cache Architectures
	2.1 Concept
	2.2 Statically Variable Line-Size Cache
	2.3 Dynamically Variable Line-Size Cache

	3 Evaluations
	3.1 Cache-Access Time and Energy
	3.2 Cache-Miss Rate
	3.3 Main-Memory-Access Time and Energy
	3.4 Performance/Energy Efficiency

	4 Conclusions
	References

	The DIVA Emulator: Accelerating Architecture Studies for PIM-Based Systems
	1 Introduction
	1.1 Overview of DIVA System Architecture
	1.2 Simulation
	1.3 Emulation

	2 The DIVA Emulator
	2.1 Physical Implementation
	2.2 Operation

	3 Summary and Conclusion
	4 References

	Compiler-Directed Cache Line Size Adaptivity
	1 Introduction
	2 System Organization
	3 Experimental Infrastructure
	3.1 Simulator
	3.2 Compilation

	4 Experiments
	5 Conclusions and Future Work
	References

	Summary of Question/Answer Sessions for Workshop Presentations
	1 Memory Technology
	2 Processor and Memory Architecture
	3 Applications and Operating Systems
	4 Compiler Technology
	5 Open microphone

	Author Index

